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Qual’è la natura dell’informatica?

Alcune note sul dibattito in corso

Selezione di estratti raccolti e commentati da Claudio Mirolo

Il  problema di  definire  cosa  sia  l’informatica,  o  computer  science per  precisarne l’accezione  utilizzando la 
terminologia anglosassone, può essere affrontato, in prima istanza, andando ad analizzare i modelli curriculari, in 
particolare quelli proposti dalle associazioni ACM e IEEE-CSE, che si sono occupate di questo problema a 
livello internazionale. L’attenzione è allora rivolta a come l’informatica viene insegnata in termini di contenuti e 
di approcci metodologici (struttura dei contenuti). Si presume, inoltre, che i modelli considerati riflettano sia le 
tematiche di ricerca, sia la pratica professionale.

Tuttavia, ai fini di una riflessione più approfondita sulla natura e sui fondamenti della disciplina, è interessante 
considerare anche il dibattito epistemologico e filosofico, recentemente sede di contributi più significativi che 
nel  passato,  che  ci  consente  di  diventare  maggiormente  consapevoli  della  ricchezza  e  dell’articolazione 
dell’ambito informatico e, conseguentemente, delle concezioni che se ne possono avere.

In queste pagine cerco di presentare una breve antologia, tuttaltro che esaustiva, di opinioni estratte da alcuni 
articoli e interventi sul tema, opinioni che si caratterizzano per i diversi punti di vista e per la varietà degli aspetti 
che tendono a mettere in luce. Il mio intento non è di suggerire l’adesione a una chiave di lettura piuttosto che ad 
un altra, ma principalmente di stimolare la riflessione e una presa di coscienza dell’urgenza di chiarirsi le idee in 
proposito, proprio ai fini dell’attività didattica, pur sapendo che al momento ogni scelta non potrà che avere una 
forte impronta soggettiva.

Una parte degli estratti che ho riportato rappresentano le opinioni di ricercatori dell’ambito informatico; solo in 
alcuni  casi  esprimono  un  approccio  propriamente  filosofico,  e  in  questi  casi  i  ruoli  di  informatico  ed 
epistemologo tendono a confondersi perché la formazione degli autori li comprende entrambi.

April 6, 2013



Natura dell’informatica 2

April 6, 2013



Natura dell’informatica 3

0. Quali domande si pongono sulla natura dell’informatica
Il primo estratto, in particolare, presenta la parte introduttiva di un corso sull’argomento, e l’ho scelto per la 
chiarezza e completezza con cui pone le domande chiave sulla natura dell’informatica. Probabilmente le prime 
riflessioni  filosofiche  hanno  interessato  il  campo  dell’intelligenza  artificiale  (ultima  sezione  di  domande 
dell’estratto),  ma, a parte  alcuni cenni,  domande di questo tipo resteranno un po’ al  margine perché, a  mio 
avviso, sono di pertinenza di un ambito un po’ più vasto della computer science, prettamente multidisciplinare, e 
meriterebbero una discussione a se stante.
William J. Rapaport, “Philosophy of Computer Science: An Introductory Course”, Teaching Philosophy 28(4): 
319-341, 2005.

What is computer science?
[Although the “final” answer to this question may simply be the extensional “whatever computer scientists do”, this  
is a reasonable issue to discuss, even if there is no intensional answer. The following subquestions indicate some of  
the interesting issues that this main question raises.] 
(a) What is science? What is engineering?
(b) Is computer science a science? Or is it a branch of engineering?
(c) If it is a science, what is it a science of?
(d) Is it a science of computers (as some authors say)?
(e) What, then, is a computer?
(f) Or is computer science a science of computation (as other authors say)?
(g) What, then, is computation?
(h) What is an algorithm? Is an algorithm different from a procedure? Many authors say that an algorithm is (like) a  

recipe; is it, or are there important differences?
(i) What are Church’s and Turing’s “theses”?
(j) Some  authors  claim  that  there  are  forms  of  computation—often  lumped  together  under  the  rubric  

“hypercomputation”—that,  in  some  sense,  go  “beyond”  Turing-machine  (TM)  computation:  What  is  
“hypercomputation”?

What is a computer program?
(a) What is the relation of a program to that which it models or simulates? What is simulation?
(b) Are programs (scientific) theories?
(c) What is an implementation?
(d) What is software? How does it relate to hardware?
(e) Can (or should) computer programs be copyrighted, or patented?
(f) Can computer programs be verified?
What is the philosophy of artificial intelligence?
(a) What is AI?
(b) What is the relation of computation to cognition?
(c) Can computers think?
(d) What are the Turing Test and the Chinese Room Argument?

Riporto qui di seguito ampi estratti da un contributo pubblicato in un numero monografico della rivista Mind and 
Machines dedicato alla filosofia dell’informatica (philosophy of computer science). Mi sembra che in questo 
articolo  l’autore  imposti  molto  chiaramente  i  problemi  dell’inquadramento  epistemologico  della  disciplina, 
distinguendo  i  principali  approcci  (matematico,  ingegneristico e  scientifico),  relativamente  ai  presupposti 
(espliciti o impliciti) che li sottendono quando si considerino i metodi applicati per acquisire nuove conoscenze, 
la natura degli oggetti studiati (ontologia) e la natura della conoscenza su di essi (epistemologia).
Amnon H. Eden, “Three Paradigms of Computer Science”, Minds and Machines, 17(2), 2007.

We examine  the  philosophical  disputes  among  computer  scientists  concerning  methodological,  ontological,  and  
epistemological  questions:  Is  computer  science a branch of mathematics,  an engineering discipline, or  a  natural  
science? Should knowledge about the behaviour of programs proceed deductively or empirically? Are computer  
programs on a par with mathematical objects, with mere data, or with mental processes? We conclude that distinct  
positions taken in regard to these questions emanate from distinct sets of received beliefs or  paradigms within the 
discipline:
– The rationalist paradigm, which was common among theoretical computer scientists, defines computer science as  

a branch of mathematics, treats programs on a par with mathematical objects, and seeks certain, a priori knowledge  
about their ‘correctness’ by means of deductive reasoning.

– The  technocratic paradigm, promulgated mainly by software engineers and has come to dominate much of the  
discipline,  defines  computer  science  as  an  engineering  discipline,  treats  programs  as  mere  data,  and  seeks  
probable, a posteriori knowledge about their reliability empirically using testing suites.

– The scientific paradigm, prevalent in the branches of artificial intelligence, defines computer science as a natural  
(empirical)  science,  takes  programs to  be  entities  on  a  par  with  mental  processes,  and  seeks  a  priori  and  a  
posteriori knowledge about them by combining formal deduction and scientific experimentation.

[...]
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[...]  we  expand on  the  arguments  of  complexity,  non-linearity,  and  self-modifiability for  the  unpredictability  of 
programs and conclude that knowledge concerning certain properties of all but the most trivial programs can only be  
established by conducting scientific experiments.
[...]
The Methodological Dispute
[...]  Mathematical  methods of  investigation guide the research in  computability,  automata theory, computational  
complexity,  and  the  semantics  of  programming  languages;  design  rules  of  thumb,  extensive  testing  suites,  and  
regimented development methods dominate the branches of software engineering, design, architecture, evolution, and  
testing;  and the  methods of  natural  sciences,  which combine  mathematical  theories  with scientific  experiments,  
govern the research in artificial intelligence, machine learning, evolutionary programming, artificial neural networks,  
artificial life, robotics, and modern formal methods. [...]
The dispute concerning the definition of the discipline and its most appropriate methods of investigation can thus be  
paraphrased as follows:
Is  computer  science a  branch of  mathematics,  on a  par  with logic,  geometry, and algebra;  is  it  an engineering  
discipline, on a par with chemical or aeronautical engineering; or is it indeed a natural, experimental (empirical)  
science, on a par with astronomy and geology? Should computer scientists rely primarily on deductive reasoning, on  
test suites and regimented software development process, or should they employ scientific practices which combine  
theoretical analysis with empirical investigation? How is the notion of a scientific experiment different from a test  
suite, if at all? What is the relation between theoretical computer science and computer science?
[...]
The Ontological Dispute
We take the notion of a computer program to be central to computer science. In this paper we focus our discussion in  
the ontological dispute concerning the nature of programs. [...]
We  take  into  consideration  all  sorts  of  entities  that  computer  scientists  conventionally  take  to  be  ‘computer  
programs’, such as numerical analysis programs, database and World Wide Web applications, operating systems,  
compilers/interpreters,  device drivers,  computer  viruses,  genetic algorithms, network routers,  and Internet search  
engines.  We shall  thus restrict  most of our  discussion to  such conventional  notions of  computer  programs, and  
generally assume that each is encoded for and executed by silicon-based von-Neumann computers. We therefore  
refrain from extending our discussion to the kind of programs that DNA computing and quantum computing are  
concerned with.
The ontological dispute in computer science may be recast in the terminology we shall introduce below as follows:
Are program-scripts mathematical expressions? Are programs mathematical objects? Alternatively, should program-
scripts  be  taken  to  be  just  ‘a  bunch  of  data’ and  the  existence  of  program-processes  dismissed?  Or  should  
programscripts be taken to be on a par with DNA sequences (such as the genomic information representing a human),  
the interpretation of which is on a par with mental processes?
[...] We seek to distinguish between two fundamentally distinct senses of the term ‘program’ in conventional usage:  
The first is that of a static script, namely a wellformed sequence of symbols in a programming language, to which we  
shall refer as a  program-script. The second sense is that of a process of computation generated by ‘executing’ a  
particular program-script, to which we shall refer as a  program-process. Any mention of the term ‘program’ shall  
henceforth apply to both senses.
[...]
The Epistemological Dispute
[...] Most specifications however are not quite as simple [...]. For this reason, fully formulated specifications are not  
always feasible [...]. Indeed, although the correctness of a program can be a source of considerable damage, or even a  
matter of life and death, it may be very difficult—or, as Fetzer and Cohn claimed, altogether impossible—to establish  
formally. [...]
These questions are at the heart of the epistemological dispute:
Is warranted knowledge about programs a priori or a posteriori? In other words, does knowledge about programs  
emanate from empirical evidence or from pure reason? What does it mean for a program to be correct, and how can  
this property be effectively established? Must we consider correctness to be a welldefined property—should we insist  
on formal specifications under all circumstances and seek to prove it deductively—or should we adopt a probabilistic  
notion of correctness (‘probably correct’) and seek to establish it a posteriori by statistical means? 
[...]
The Rationalist Paradigm
By the rationalist paradigm we refer to that paradigm of computer science which takes the discipline to be a branch of  
mathematics, the tenets of which have been common among scientists investigating various branches of theoretical  
computer science, such as computability and the semantics of programming languages. [...]
The Rationalist Methods
[...] The rationalist stance in the methodological dispute can thus be summarized as follows:
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Computer science is a branch of mathematics, writing programs is a mathematical activity, and deductive reasoning is  
the only accepted method of the investigating programs. [...]
The Rationalist Ontology
[...] the rationalist position in the ontological dispute [...] can be recast and justified as follows:
Program-scripts are mathematical expressions. Mathematical expressions represent mathematical objects. A program 
p is that which is fully and precisely represented by [its script] sp. Therefore p is a mathematical object. [...]
The Rationalist Epistemology
[...] The rationalist epistemological position can thus be recast as follows:
Programs can be fully and formally specified, and their ‘correctness’ is a well-defined problem. Certain, a-priori  
knowledge about programs emanates from pure reason, proceeding from self-evident axioms to the demonstration of  
theorems by means of formal deduction. A-posteriori knowledge is to be dismissed as anecdotal and unreliable.
[...]
The Technocratic Paradigm
The Technocratic Paradigm By the ‘technocratic paradigm’ we refer to that paradigm of computer science which  
defines the discipline as a branch of engineering, proponents of which dominate the various branches of software  
engineering, including software design, software architecture,  software maintenance and evolution, and software  
testing. In line with the empiricist position in traditional philosophy, the technocratic paradigm holds that reliable, a  
posteriori  knowledge  about  programs  emanates  only  from  experience,  whereas  certain,  a  priori  ‘knowledge’  
emanating  from  the  deductive  methods  of  theoretical  computer  science  is  either  impractical  or  impossible  in  
principle.
The Technocratic Methods
Wegner describes [...] the emergence of the technocratic paradigm [in the 1970s], echoing what we shall refer to as  
the argument of complexity [...].
[...] the technocratic doctrine contends that there is no room for theory nor for science in computer science. During  
the 1970 this position, promoted primarily by software engineers and programming practitioners, came to dominate  
the various branches of software engineering. Today, the principles of scientific experimentation are rarely employed  
in software engineering research. [...] Instead of conducting experiments, software engineers use testing suites, the  
purpose of which is to  establish statistically  the reliability  of specific products  of the process of  manufacturing  
software. [...]
The position of the technocratic paradigm concerning the methodological dispute can thus be recast as follows:
Computer science is a branch of engineering which is concerned primarily with manufacturing reliable computing  
systems, a quality determined by methods of established engineering such as reliability testing and obtained by means  
of a regimented development and testing process. For all practical purposes, the methods of theoretical computer  
science are dismissed as ‘naval gazing’. [...]
The Technocratic Epistemology
[...] The technocratic position concerning the epistemological dispute may be recast in terms of the argument of  
complexity as follows:
It is impractical to specify formally or to prove deductively the ‘correctness’ of a complete program. A priori, certain  
knowledge about the behaviour of actual programs is therefore unattainable. If at all meaningful, ‘correctness’ must  
be taken to mean tested and proven ‘reliability’, a posteriori knowledge about which is measured in probabilistic  
terms and established using extensive testing suites.
Fetzer  (1993)  and  Avra  Cohn  (1989)  offer  what  is  essentially  an  ontological  argument  for  an  even  stronger  
epistemological position [...]. According to this argument, a priori knowledge about the behaviour of machines is  
impossible in principle [...].
Peter Markie (2004) defines empiricism as that school of thought which holds that sense experience is the ultimate  
source of all our concepts and knowledge. Empiricism rejects pure reason as a source of knowledge, indeed any  
notion of a priori, certain knowledge, claiming that warranted beliefs are gained from experience. Thus, [this view is]  
in line with the empiricist philosophical position. [...]
The Technocratic Ontology
[...] Motivated by an underlying concern for ontological parsimony, and in particular the proliferation of universals in  
the platonist’s putative sphere of abstract existence, the nominalist principle commonly referred to as Occam’s Razor  
(“don’t multiply entities beyond necessity”) denies the existence of abstract entities. By this ontological principle,  
nothing exists outside of concrete particulars, including not entities that are ‘that which is fully and precisely defined  
by the program script’. The existence of a program is therefore unnecessary.
The technocratic ontology can thus be summarized as follows:
‘That which is fully and precisely represented by a script  sp’ is a putative abstract (intangible, non-physical) entity 
whose  existence  is  not  supported  by  direct  sensory  evidence.  The  existence  of  such  entities  must  be  rejected.  
Therefore, ‘programs’ do not exist.
[...]
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The Scientific Paradigm
The scientific paradigm contends that computer science is a branch of natural (empirical) sciences, on a par with  
“astronomy,  economics,  and  geology”  (Newell  and  Simon  1976),  the  tenets  of  which  are  prevalent  in  various  
branches of AI, evolutionary programming, artificial neural networks, artificial life (Bedau 2004), robotics (Nemzow  
2006),  and modern formal methods (Hall  1990). Since many programs are unpredictable, or even ‘chaotic’, the  
scientific paradigm holds that a priori knowledge emanating from deductive reasoning must be supplanted with a  
posteriori knowledge emanating from the empirical evidence by conducting scientific experiments. Since program-
processes are temporal, non-physical, causal, metabolic, contingent upon a physical manifestation, and nonlinear  
entities, the scientific paradigm holds them to be on a par with mental processes.
The Scientific Methods
The scientific notion of  experiment must be clearly distinguished from the technocratic notion of a  reliability test. 
The purpose of a reliability test is to establish the extent to which a program meets the needs of its users, whereas a  
scientific experiment is designed to corroborate (or refute) a particular hypothesis. If a test suite fails, the subject of  
experiment (the program) must be revised (or discarded); if an experiment ‘fails’, the theory must be revised (or  
discarded), or else the integrity of the experiment is in doubt. [...]
For this reason, experiments with programs go beyond establishing the usability of a particular manufactured artefact,  
even beyond the ‘extent and limitations of mechanistic explanation’. [...]
If computer science is indeed a branch of natural sciences then its methods must also include deductive and analytical  
methods of investigation.
From this  Wegner  (1976) concludes that  theoretical  computer  science stands to  computer  science as  theoretical  
physics stands to physical sciences: deductive analysis therefore plays the same role in computer science as it plays in  
other branches of natural sciences. [...]
To summarize, the scientific position concerning the methodological question can [be stated] as follows:
Computer science is a natural science on a par with astronomy, geology, and economics, any distinction between their  
respective  subject  matters  is  no  greater  than  the  limitations  of  scientific  theories.  Seeking  to  explain,  model,  
understand,  and  predict  the  behaviour  of  computer  programs,  the  methods  of  computer  science  include  both  
deduction and empirical validation. Theoretical computer science therefore stands to computer science as theoretical  
physics stands to physics.
The Scientific Epistemology
[...] from the compelling arguments of  complexity,  self-modifiability, and  non-linearity for the unpredictability of 
programs, the behaviour of some programs is inevitably a source of a surprise, and a priori knowledge about them is  
severely limited. [...]
The tenets of the scientific epistemology can therefore be summarized as follows:
While it may be possible in principle to deduce some of the properties of the program and all the consequences of  
executing  it,  in  practice it  is  very  often  impossible.  Therefore,  while  some knowledge  about  programs can  be  
established  a priori,  much of what we know about programs must necessary be limited to some probabilistic,  a 
posteriori notion of knowledge.
The Scientific Ontology
[...] The scientific ontology and the arguments in its favour can thus be summarized as follows:
Program-scripts are on a par with DNA sequences, in particular with the genetic representation of human organs such  
as the brain, the product of whose execution—program-processes—are on a par with mental processes: temporal,  
non-physical, causal, metabolic, contingent upon a physical manifestation, and non-linear entities.

Cercando di riassumere le caratterizzazioni in mdo schematico:

Paradigma razionalista Paradigma tecnocratico Paradigma scientifico

Metodo l’informatica fa parte della matematica
ragionamento deduttivo

l’informatica fa parte dell’ingegneria
test di affidabilità

l’informatica fa parte delle scienze
teoria (formulazione di ipotesi)
 → deduzione → validazione empirica

Ontologia testo del programma
= espressione matematica

programma = oggetto matematico

testo del programma
= aggregato di meri dati

il programma è un’entità immateriale,
perciò è inutile presupporne l’esistenza

testo del programma
assimilabile a una rete di neuroni

programma
assimilabile a un processo mentale

Epistemologia specifiche formali dei programmi
complete

la correttezza è ben definita
conoscenza a-priori

specifiche formali dei programmi
impraticabili (o impossibili)

ha senso parlare solo di affidabilità
conoscenza a-posteriori

(misure di affidabilità)

specifiche formali dei programmi
incomplete

proprietà certe / proprietà stimate
conoscenza a-priori (parziale)

e a-posteriori (probabilistica)
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1. Un punto di vista centrato sull’espressività dei programmi: “epistemologia procedurale”

Se rifletto  sul mio approccio all’insegnamento dell’informatica,  con un’ottica  prevalentemente orientata  alla 
programmazione, e sugli obiettivi che mi pongo, probabilmente il punto di vista autorevole di Gerald Sussman 
coglie alcuni aspetti sostanziali che mi sembra di condividere, ma che non saprei dire fino a che punto possano 
essere ritenuti rappresentativi dell’ambito informatico in tutta la sua complessità.
Gerald Jay Sussman, “The Legacy of Computer Science”, in Computer Science: Reflections on the Field, 
Reflections from the Field, The National Academies Press, 2004.

But, as I have pointed out (H. Abelson, G.J. Sussman, and J. Sussman,  Structure and Interpretation of Computer  
Programs, 2nd Edition, MIT Press, Cambridge, Mass., 1996):
Computer  Science is  not  a  science, and its ultimate significance has little  to  do with computers.  The computer  
revolution is a revolution in the way we think and in the way we express what we think. The essence of this change is  
the emergence of what might best be called procedural epistemology—the study of the structure of knowledge from 
an imperative point  of  view, as opposed to the more declarative point  of  view taken by classical  mathematical  
subjects. Traditional mathematics provides a framework for dealing precisely with notions of “what is.” Computation  
provides a framework for dealing precisely with notions of “how to.”
Computation provides us with new tools to express ourselves. This has already had an impact on the way we teach  
other engineering subjects. For example, one often hears a student or teacher complain that the student knows the  
“theory” of the material but cannot effectively solve problems. We should not be surprised: the student has no formal  
way to learn technique. We expect the student to learn to solve problems by an inefficient process: the student  
watches the teacher solve a few problems, hoping to abstract the general procedures from the teacher’s behavior with  
particular examples. The student is never given any instructions on how to abstract from examples, nor is the student  
given any language for expressing what has been learned. It is hard to learn what one cannot express.
[...]
Traditionally, we try to communicate these skills by carefully solving selected problems on a blackboard, explaining  
our reasoning and organization. We hope that the students can learn by emulation, from our examples. However, the  
process of induction of a general plan from specific examples does not work very well, so it takes many examples  
and much hard work on the part of the faculty and students to transfer the skills.
However, if I can assume that my students are literate in a computer programming language, then I can use programs  
to communicate ideas about  how to solve problems: I can write programs that describe the general technique of  
solving a class of problems and give that program to the students to read. Such a program is precise and unambiguous
—it can be executed by a dumb computer! In a nicely designed computer language a well-written program can be  
read by students, who will then have a precise description of the general method to guide their understanding. With a  
readable program and a few well-chosen examples it is much easier to learn the skills. Such intellectual skills are  
very hard to transfer without the medium of computer programming. Indeed, “a computer language is not just a way  
of getting a  computer  to  perform operations but  rather it  is  a novel formal medium for expressing ideas about  
methodology. Thus programs must be written for people to read, and only incidentally for machines to execute”  
(Abelson et al., Structure and Interpretation of Computer Programs, 1996).
[...]  In  our  class  computational  algorithms are  used  to  express  the  methods  used  in  the  analysis  of  dynamical  
phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally  
effective. Students  are  expected to  read our  programs and to extend them and to write  new ones.  The task of  
formulating a method as a computer-executable program and debugging that program is a powerful exercise in the  
learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to  
compute results.
We may think that teaching engineering and science is quite removed from daily culture, but this is wrong. Back in  
1980 (a long time ago!) I was walking around an exhibit of primitive personal computers at a trade show. I passed a  
station where a small girl (perhaps 9 years old) was typing furiously at a computer. While I watched, she reached  
over to a man standing nearby and pulled on his sleeve and said: “Daddy! Daddy! This computer is very smart. Its  
BASIC knows about recursive definitions!” I am sure that her father had no idea what she was talking about. But  
notice: the idea of a recursive definition was only a mathematician’s dream in the 1930s. It was advanced computer  
science in the 1950s and 1960s. By 1980 a little girl had a deep enough operational understanding of the idea to  
construct an effective test and to appreciate its significance.

Attenzione,  però:  la  conoscenza  procedurale,  in  se,  è  anche  una  delle  più  primitive  forme  di  conoscenza. 
“Ricette” per perseguire determinati obiettivi possono essere apprese dagli individui di molte specie di animali 
superiori. Ciò, in particolare, se l’unico operatore in gioco è la composizione sequenziale delle varie azioni. Le 
conoscenze “proposizionali” della matematica, e delle scienze, sono da questo punto di vista ben più astratte e 
difficili da capire—quindi, da apprendere. Quello che caratterizza l’informatica, secondo questa accezione, non è 
dunque una mera collezione di ricette, più specificamente di algoritmi, per risolvere questo o quel problema, ma 
la capacità di capire che ricette complesse effettivamente risolvono ogni istanza del problema in esame. Cioè la 
ricetta (come?) assieme alla  sua logica (perché)—ed eventualmente anche assieme alla caratterizzazione dei 
termini entro cui può essere applicata (con quali risorse?).
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Provo  ad  esemplificare  il  contenuto  di  questa  mia  osservazione  riportando,  come  aneddoto,  parte  di  una 
discussione che alcuni anni or sono è seguita alla questione posta da una specializzanda (abilitanda nella calsse 
A042),  se  fosse  cioè  più  difficile  apprendere  il  concetto  matematico  di  funzione o  quello  informatico  di 
algoritmo.  I  nostri  punti  di  vista  divergevano  al  riguardo,  ma  questo  probabilmente  perché  la  nostra 
interpretazione della sostanza di un algoritmo era diversa.  Fino a prova contraria,  resto infatti  convinto che 
l’algoritmo sia un concetto ben più complesso, che implica quello di funzione (nel senso matematico) come 
prerequisito: astrarre la relazione funzionale fra i dati di un problema e la relativa soluzione è un passo che viene 
prima di qualunque tentativo di immaginarne una strategia risolutiva generale. Frequentemente, a mio avviso, 
quando uno studente sostiene di “avere capito un algoritmo”, la sua affermazione dovrebbe essere interpretata 
nel senso che lo studente ritiene di “essere in grado di simularne il comportamento su alcune specifiche istanze 
del problema” (cosa che,  per  inciso,  il  computer  sa  fare  addirittura  meglio)  e  tuttalpiù “intuisce” una certa 
relazione con la strategia che lui stesso avrebbe adottato per risolvere quel problema. Non è detto, però, che sia 
anche in grado di formalizzare autonomamente questa sua intuizione. In realtà,  noi non dobbiamo dare per 
scontato che lo studente capisca l’algoritmo nel senso che interessa l’informatica: ciò su cui si concentra la sua 
attenzione, in genere, è il modello di calcolo sottostante. D’altro canto, per parlare di un algoritmo dobbiamo 
presumere che il modello di calcolo sottostante sia già acquisito, cioè che almeno su questo l’interpretazione 
degli interlocutori sia concorde. (Ovviamente, si pone anche il problema di creare le condizioni in cui lo studente 
possa acquisire familiarità con un modello computazionale, ma questo è un aspetto diverso.)
Al di là della mancanza di accordo sulla definizione (o sulla definibilità in un senso indipendente da specifici 
modelli computazionali), le trattazioni degli algoritmi che si trovano nei testi introduttivi spaziano fra i due 
estremi rappresentati dalla familiarizzazione con il modello computazionale da un lato e dalla piena “astrazione 
algoritmica”  dall’altro,  con  uno  sbilanciamento,  però,  verso  l’accezione  più  banale,  in  quanto  le  soluzioni 
algoritmiche sono raramente argomentate in modo convincente.
Da questo punto di vista, è interessante il seguente intervento di Lars Janlert, che giudica insoddisfacente una 
concezione di programma che si  limiti  a  descrivere un processo risolutivo (come?),  ma non includa la  sua 
giustificazione razionale (perché?). Si tratta in sostanza dello stesso problema sollevato sopra: spiegare perché 
un programma risolve un certo problema vuol dire (almeno) argomentare la correttezza dell’algoritmo realizzato 
da quel programma.
Lars-Erik Janlert, “The program is the solution—what is the problem?”,  European Conference on  Computing 
and Philosophy, 2006.

[...] in addition to being causative and descriptive, we should also require of a program that it be rationally justified:  
that the specific structure of the program can be explained by the (rational) ways in which it contributes to achieving  
the goal of the intended process. Non-traditional ways of producing programs, “metamethods” such as evolutionary  
programming, do not intrinsically involve the production of a rationale. Moreover, they are not restricted to be easily  
(or  at  all)  rationalized  after  the  fact.  If  the  requirement  of  rationality  is  accepted  and  if  the  worries  that  
metaprogramming  sometimes  results  in  products  difficult  to  rationalize  are  taken  seriously,  the  question  arises  
whether we can comfortably accept that the requirement of rationality is only satisfied at the metalevel? If the use of  
metaprogramming  spreads,  and  we  are  not  satisfied  with  incomprehensible  “programs,”  then  the  business  of 
programming may take a turn from problem-solving in the sense of invention and engineering towards problem-
solving in the sense of explanation and research.
I propose the following three necessary criteria for something being a program, formulated in terms of its relation to  
the intended process:
1) causative – the program causes the process;
2) descriptive – the program describes the process;
3) justified  – the program has a rational explanation in terms of the goal of the process; i.e. the structure of the  

program can be explained by the (rational) ways in which it contributes to achieving the goal.
I expect points 1 and 2 to correspond well to generally held views, whereas point 3 may have some news value. The  
requirement of justification mirrors the reasonable assumption that a subjective method is  not  just a recipe: it also 
needs a rationale; it must be a reasoned method (which is why manually simulating the execution of a working  
“program” cannot in itself be a subjective method).
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2. Anche se l’informatica non si occupa della realtà, la scientificità sta nello spirito di ricerca conoscitiva
Nell’intervento  che  segue,  anziché  rivolgere  la  propria  attenzione  all’oggetto  di  studio  o  al  metodo  della 
disciplina, Richard Bornat sposta il problema della “scientificità” dell’informatica su un piano diverso, quello 
della motivazione ideale del ricercatore, ispirato da puro desiderio di conoscenza, non dall’utilità pratica.
Richard Bornat, “Is ‘Computer Science’ science?”, European Conference on Computing and Philosophy, 2006.

CS could be science, or it could be mathematics, or it could be stamp collecting. One difficulty is that, unless you are  
a Platonist – which, since programming is constructivist logic, few programmers are at heart – there is no reality to be  
scientific about, unlike the realities that confront physics, chemistry, biology and sometimes even psychology. Simon  
[...] made an unconvincing attempt to define a Platonist science of computing. It won’t wash: programming is all  
made up, quite unreal, so we can’t be physically scientific about programs or even their executions. Mathematics is  
made up and unreal too, so far as non-Platonists are concerned. So maybe CS is mathematics after all (there isn’t  
really a case to be made for stamp collecting: hence the failure of software science).
But mathematics is utterly abstracted from reality, the study of the structure of arguments that have not yet been  
made. CS, despite the fact that programs are completely meaningless, is nailed to reality. Programs drive trains, fly  
planes, work your radio, live inside your TV remote control, mess you up at every turn. There have been unreal  
programs – physicists are writing them now, in anticipation of a quantum computer that will work in ways that only  
they truly believe in – but they are rare and so far unimportant.
It’s clear that all of CS has more than a touch of engineering about it. When we devise programming languages, for  
example, we make them as convenient to use as we can for the construction of programs, at the same time as making  
them as spare and clean as we can for the purposes of mechanical translation. [...]
CS isn’t reality-science and it isn’t mathematics and it’s at least half engineering. Is there a way that it can be a  
science?  Perhaps  we are  looking  in  the  wrong direction,  at  the  subject  rather  than  its  practitioners.  Hoare  has  
proposed [6] that we are scientists because of the way we behave. Engineers compromise, fudge, make things fit. I do  
that, and I enjoy doing it. But when I’m not programming, I’m a seeker after truth. Scientists, Hoare observed, search  
ruthlessly for truths without regard for the consequences. That’s what physicists, chemists and biologists do, hoping  
to weigh electrons, purify proteins or get inside the heads of baboons. None of these activities is useful at present, so  
scientists  are  a  little  like  mathematicians,  but  they  are  all  obviously  about  something  real,  so  scientists  aren’t  
mathematicians after all. For myself, I’m sure that I’m sometimes a scientist. In practice I’m always both behind  
(engineer) and ahead (scientist) of the game.
[...]
Conclusion
Hoare behaves like a scientist most of the time. I do so some of the time. CS is what we do, so CS is science. Science  
is possible even in the unreal landscape of computing.

Benché  interessante  come  spunto  di  riflessione,  una  simile  concezione  non  sembra  destinata  ad  avere 
significativi riscontri operativi da un punto di vista epistemologico, essendo troppo legata alla soggettività delle 
motivazioni, e indebolita dalla probabile confluenza di motivazioni di natura diversa nel lavoro dello scienziato. 
Tuttavia, l’interpretazione di Bornat del lavoro dell’informatico certamente diverge dall’accezione comune, e in 
questa sede sollecita almeno una domanda importante: come potremmo fare emergere, di fronte ai nostri allievi, 
l’interesse per la “conoscenza pura” che motiva almeno una parte delle attività dell’ambito informatico?
La rilevanza di questa domanda appare evidente quando si guarda alle matricole universitarie iscritte ai corsi di 
laurea in informatica dell’Università di Udine. Da un lato molti studenti partono con un’accezione prettamente 
strumentale  della  disciplina,  e  di  conseguenza  rischiano  una  delusione  delle  aspettative  quando  devono 
confrontarsi con argomenti caratterizzati scientificamente. D’altro lato, le valutazioni conseguite all’esame di 
maturità sono mediamente inferiori a quelle dei loro colleghi immatricolati in ingengeria, medicina, economia, 
lingue straniere o lettere. (Prendendo come riferimento la coorte 2005-06, per esempio, tale valutazione media è 
75.8/100, che può essere confrontata con 82.5 di ingegneria, 79.7 di economia, o 77.3 di lettere.) Una possibile 
interpretazione  di  queste  osservazioni  è  che,  al  termine  della  formazione  superiore,  ai  corsi  di  laurea  in 
informatica gli studenti non associano dei contenuti scientifici o l’interesse a mettere in gioco le proprie capacità 
di risoluzione di problemi, come invece ci si aspetta per le vocazioni in matematica o fisica, ma piuttosto si 
immaginano come utenti di tecnologie. Quindi, ai fini di consentire agli studenti una scelta più consapevole, 
quando pensano di intraprendere studi accademici in informatica, è necessario che la scuola secondaria sia in 
grado di delineare un quadro coerente di ciò di cui l’informatica si occupa.
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3. L’informatica è una disciplina scientifica
Come esempio di articolata discussione a supporto di una collocazione scientifica dell’informatica, riporto alcuni 
ulteriori  estratti  dall’articolo  di  A.H.  Eden.  Le  argomentazioni  fanno  riferimento  alla  caratterizzazione  del 
paradigma scientifico in base agli aspetti  metodologici,  epistemologici e ontologici cui si  è accennato nella 
sezione introduttiva.
Amnon H. Eden, “Three Paradigms of Computer Science”, Minds and Machines, 2007 (citato sopra).

The  argument of complexity receives further corroboration from the technological progress during the past three  
decades since it was first articulated. Since 1979, the average size of programs and operating systems grew in at least  
four orders of magnitude. More importantly, the complexity of compilers, operating systems, microprocessors, and  
input is today compounded by component-based software engineering technologies [...]. These technologies gave rise  
to gigantic programs such as Internet search engines and electronic commerce applications which consist of hundreds  
of software components (e.g., dynamically linked libraries, server-side and client-side threads), whose construction is  
often ‘outsourced’ or otherwise delegated to a range of independent commercial bodies or individual volunteers and  
which execute on any one of a wide range of microprocessors (i.e., in a ‘heterogeneous environment’). The notion of  
‘input’ with regard to these programs has also been much further complicated as signals and data arrive to these  
programs from innumerable  other interacting programs [...]  and which communicate via vast  and very complex  
communication  networks.  Any form of  deductive  reasoning  about  such  programs requires  the representation of  
petabytes of instructions and data in every one of the components of the program and of every computer, operating  
system, and network router that is involved (directly or indirectly) in their execution. Since these often change during  
the lifespan of a program-process, the very notion of a program-script is therefore not well-defined, specifications are  
not well-defined, and deductive reasoning about their de facto representations is an idealization that is as unrealistic  
and ineffective as, say, deductive reasoning about the individual atomic particles of airplanes and power stations.
[...]
Additional arguments supporting the relevance of scientific experimentation concern the limits of analytical methods.  
[Here] we shall  examine the  argument of non-linearity and the  argument of self-modifiability and conclude that, 
indeed, knowledge about even some of the simplest programs can only be gained via experiments.
Computer programs can also be used as tools in discovering and empirically establishing the laws of nature. In  
particular, program simulations can be used to examine the veracity of models of non-linear phenomena [...] in other  
natural sciences. For example, in cognitive psychology, an artificial intelligence program can be taken to be a tool for  
empirical examinations of models of memory and learning; in bioinformatics, genetic algorithms are used to test the  
extent to which models of the reproduction of DNA molecules are corroborated by the laws of Darwinian natural  
selection; and in astronomy, the predictions of models for the creation of the universe can be tested by means of  
computer simulations. If computer science is concerned with the ‘phenomena surrounding computers’—such as the  
behaviour of computer simulations—then its subject matter is distinct from any given class of natural phenomena at  
most in the extent to which scientific theories deviate from reality. In other words, our programs are only ‘incorrect’  
to the extent to which the scientific theories they implement deviate from the phenomena they seek to explain. In  
Popper’s (1963) terms, the difference between programs and the (naturalistic view of) reality is at most limited by the  
verisimilitude (or truthfulness) of our most advanced scientific theory. The progress of science is manifest in the  
increase in this verisimilitude. Since any distinction between the subject matter of computer science and natural  
sciences is taken to be at most the product of the (diminishing) inaccuracy of scientific theories, the methods of  
computer science are the methods of natural sciences.
But the methods of the scientific paradigm are not limited to empirical validation, as mandated by the technocratic  
paradigm.  Notwithstanding  the  technocratic  arguments  to  the  unpredictability  of  programs  [...],  the  deductive  
methods of theoretical computer science have been effective in modelling, theorizing, reasoning about, constructing,  
and even in predicting—albeit only to a limited extent—innumerable actual programs in countless many practical  
domains.  For example, context-free languages has been successfully  used to  build compilers  (Aho et al.  1986);  
computable notions of formal specifications (Turner 2005) offer deductive methods of reasoning on program-scripts  
without requiring the complete representation of petabytes of program and data; and classical logic can be used to  
distinguish effectively between abstraction classes in software design statements (Eden et al. 2006). [...]
Analytical investigation is used to formulate hypotheses concerning the properties of specific programs, and if this  
proves to be a highly complex task [...] it nonetheless an indispensable step in any scientific line of enquiry.
[...]
The argument of complexity demonstrates that deductive reasoning is impractical for large programs. The following 
arguments however  demonstrate that the outcome of  executing even very small  programs cannot be determined  
analytically.
The  argument  of  self-modifiability for  the  unpredictability  of  programs concerns  the  fact  that  certain  program-
processes modify the very set of their instructions (the program-script) during the process of computation. [...]
The  argument  of  non-linearity for  the  unpredictability  of  programs relies  on  the  fact  that  the  vast  majority  of  
program-processes belong to the deterministically chaotic class of phenomena. [...]

In  conclusion  from  the  compelling  arguments  of  complexity,  self-modifiability,  and  non-linearity  for  the  
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unpredictability  of  programs, the behaviour of some programs is  inevitably a  source of  a  surprise,  and a  priori  
knowledge about them is severely limited. Therefore, while it may be possible in principle to deduce some of the  
properties of the program and all the consequences of executing it, in practice it is very often impossible.
[...]
We postulate that an adequate ontological explanation for program-processes must offer an account for the following  
unique set of their apparent properties:
1. Temporal: The existence of program-processes extends in time in the interval between being created and being  

destroyed;
2. Non-physical: Program-processes are non-physical, intangible entities;
3. Causal: Program-processes can interact with and move physical devices;
4. Metabolic: Program-process ‘consume’ energy;
5. Contingent upon a physical manifestation: The existence of program-processes depends on the existence of that  

physical computer which is said to be ‘executing’ it;
6. Nonlinear: The outcome of a program-process, in the general case, cannot be analytically determined.
Let us examine briefly the weaknesses of the rationalist and of the technocratic ontological explanations with relation  
to the apparent properties of programprocesses.  Rationalism asserts that programs are mathematical objects. But  
mathematical objects, such as Turing machines, recursive functions, triangles, and numbers cannot be meaningfully  
said to metabolize nor have a causal effect on the physical reality in any immediate sense. It would be particular  
difficult to justify also a claim that mathematical objects have a specific lifespan or that they are contingent upon any  
specific physical manifestation (except possibly as mental artefacts). [...]
Alternatively, the technocratic paradigm reduces program-scripts to mere “bunches of data”. It is hostile towards  
assertions of existence of any abstract, ontologically independent manifestations of whatever the data is taken to  
represent.  But  program-processes do have causal effect on physical  reality: They control robotic  arms, artificial  
limbs,  [...]  the  navigation  of  automated  and  semi-automated vehicles,  the  sale  and  purchase of  stocks in  stock  
exchanges, and to some degree almost every single home appliance. Programs also treat depression [...], count votes  
in national elections, and spread copies of themselves over the Internet. Program-processes came to have a tangible  
effect on concrete, physical reality [...].
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4. Per inquadrare le scienze moderne, come l’informatica, non bastano più i paradigmi tradizionali
Il lavoro di Gordana Dodig-Crnkovic da cui sono tratti i passi seguenti affronta in modo ampio e competente una 
parte  dei  temi  evocati  da  queste  mie  note.  La  prospettiva  mi sembra  pragmatica.  Lo sforzo  di  classificare 
l’informatica secondo i paradigmi che sono stati utilizzati per le scienze tradizionali, quali la matematica e la 
fisica, potrebbe risultare sterile, in quanto è cambiato il contesto di sviluppo delle scienze moderne. Tuttavia, 
all’interno dell’informatica sono riconoscibili, a giudizio dell’autrice, aspetti scientifici ampiamente sufficienti a 
caratterizzare l’informatica (anche) come disciplina scientifica.
Gordana Dodig-Crnkovic, “Computer Science in a Theory of Science Discourse”, Master Thesis in Computer 
Science, Department of Computer Science, Mälardalen University, 2002.

Computer Science is a very new field and among the youngest sciences. As a consequence, it has typical modern  
characteristics: it is interdisciplinary and very close related to technology. It suffers from a lack of its own scientific  
traditions at the same time as it undergoes a tremendously dynamic development. The need to reflect upon scientific  
methods in Computer Science is urgent. In classical sciences (as for example physics) the theory of science has a  
great  tradition  and  it  provides  essential  tools  for  understanding  the  structure,  logic  and  modes  of  growth  of  
knowledge. Theory of science helps define standards for what can be considered as science. Computer technology  
changes so quickly that knowledge very rapidly becomes out of date. It is vital to concentrate on the science behind  
the technology in order to assure continuity. The results of theory of science are in one way or another directly useful  
for the development of science itself. In that sense the ambition of theory of science is not only understanding of  
common patterns and features within scientific fields, but also assisting progress of science. The aim of this essay is  
to  situate  Computer  Science among other  sciences in  a  theory  of  science  perspective,  as  well  as  to  define  the  
scientific discipline of Computer Science as it appears today, in the year of 2002.
[...]
This essay aims to analyze a new science that does not even have a commonly accepted name, in either English or  
Swedish. The Swedish terms “datalogi” and “datavetenskap” are used with different meaning at different universities  
and in different contexts exhibiting great diversity of definitions and educational contents. Swedish National Agency  
for  Higher  Education,  Högskoleverket,  uses  the  term ”datavetenskap”  to  correspond to  English  term Computer  
Science.  According  to  definitions  of  IEEE-ACM Computing  Curricula  2001,  the  umbrella  term for  Computer  
Science,  Computer  Engineering,  Software  Engineering  and  Information  Systems  is  ”Computing”.  Some  other  
European  languages  (German,  French)  focus  more  on  IT  (Information  Technology)  that  is  a  generic  term  
encompassing even ”Computing”. In Sweden and even in number of other countries IT has a specific and more  
limited meaning, and it is very often at different universities organizationally separated from the rest of Computing.  
The above is only an illustration indicating how difficult it is to characterize scientific aspects of this new field that  
more resemble a dynamic process than a stable equilibrium phenomenon. Nevertheless it is necessary and instructive  
to try to conceptualize even such a dynamical process and to relate to classical sciences, including mathematics and  
logics (abstract/formal sciences) as well as natural sciences (and sometimes in certain methodological questions,  
especially within Software Engineering, even Social Sciences) that are more empirically focused.
[...]
The discipline of computing thus encompasses Computer Science, Computer Engineering, Software Engineering and  
Information Systems. Of course it is impossible to give a simple and unobjectionable definition of Computing and  
Computer Science. Let me mention some of the existing ones:
1. The  discipline  of  Computing  is  the  systematic  study  of  algorithmic  processes  that  describe  and  transform  

information: their theory, analysis, design, efficiency, implementation, and application.
2. Computer Science is the study of phenomena related to computers, Newell, Perlis and Simon, 1967.
3. Computer Science is the study of information structures, Wegner, 1968, Curriculum 68.
4. Computer Science is the study and management of complexity, Dijkstra, 1969.
5. Computer Science is the mechanization of abstraction, Aho and Ullman 1992.
6. Computer Science is a field of study that is concerned with theoretical and applied disciplines in the development  

and use of computers for information storage and processing, Mathematics, Logic, science, and many other areas.
The second definition reflects an empirical tradition since it asserts that Computer Science is concerned with the  
study of a class of phenomena. The first and third definitions reflect a mathematical tradition since algorithms and  
information structures are two abstractions from the phenomena of Computer Science.
The  third  definition  was  used  by  Wegner  as  the  unifying  abstraction  in  his  book on  Programming Languages,  
Information  Structures  and  Machine  Organization.  This  view  of  Computer  Science  has  its  historical  roots  in  
information theory. It  strongly influenced the development of Curriculum 68;  a  document  which has been very  
prominent in the development of undergraduate Computer Science curricula afterwards. It is implicit in the German  
and French use of  the respective terms  “Informatik” and  “Informatique” to  denote the discipline of  Computer 
Science.
[...]
The fourth definition reflects the great complexity of engineering problems encountered in managing the construction  
of complex software-hardware systems.
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It  is  argued  [...]  that  Computer  Science  was  dominated  by  empirical  research  paradigms  in  the  1950s,  by  
mathematical research paradigms in the 1960s and by engineering oriented paradigms beginning with the 1970s.
The diversity of research paradigms within Computer Science may be responsible for the divergences of opinion  
concerning the nature of Computer Science research.
The fundamental question underlying all computing is: What can be (efficiently) automated? The discipline was born  
in 1940s through the joining of Mathematical Logic, algorithm theory and the electronic computer.
Logic is important for computing not only because it forms the basis of every programming language, or because of  
its investigating into the limits of automatic calculation, but also because of its insight that strings of symbols (also  
encoded as numbers) can be interpreted both as data and as programs.
[...]
In spite of all characteristics that differ the young field of Computer Science from several thousand years old sciences  
such  as  Mathematics  and  Logic,  we  can  draw a  conclusion  that  Computer  Science  contains  a  critical  mass  of  
scientific features to qualify as a science.
From the principal point of view it is important to point out that all modern sciences are very strongly connected to  
technology. This is very much the case for Biology, Chemistry and Physics, and even more the case for Computer  
Science. That is a natural consequence of the fact that the research leading to the development of modern computers  
very often is conducted within industry.
The engineering parts in the Computer Science have more or less close connection to the hardware (physical) aspects  
of computer. Software engineering is concerned with the problems of design, construction and maintenance of the,  
often huge, software systems that are typical of industry.
Theoretical Computer Science, on the other hand, is scientific in the same sense as theoretical parts of any other  
science. It is based on a solid ground of Logic and Mathematics.
The important difference is that the computer (the physical object that is directly related to the theory) is not a focus  
of investigation (not even in the sense of being the cause of certain algorithm proceeding in certain way) but it is  
rather  theory  materialized,  a  tool  always  capable  of  changing  in  order  to  accommodate  even  more  powerful  
theoretical concepts.

In sintesi: le scienze “tradizionali” appaiono meglio fondate epistemologicamente non solo perché la riflessione 
sui fondamenti è cominciata molto prima, ma anche perché sono nate in un contesto storico in cui la complessità 
dell’universo scientifico-tecnologico era inferiore a quella attuale e, in particolare, le attività scientifiche erano 
più facilmente separabili dalle attività tecnologiche. Tuttavia, l’aumento della complessità e la contaminazione 
interdisciplinare sono una caratteristica dello sviluppo di tutte le scienze moderne.
Un concetto per certi versi analogo, sia pure espresso in modo più radicale, viene evidenziato da Jean-Claude 
Simard, epistemologo e storico della scienza.
Jean-Claude  Simard,  “Science,  technologie  et  société”,  Le  Saut  Quantique,  www.apsq.org/sautquantique, 
2002. (L’approssimativa traduzione dal francese è mia.)

[...] il Progetto manhattan ha completamente rivoluzionato i rapporti fra la scienza e la tecnica. Se si eccettua qualche  
spirito libero come Hawking, una cosa come il pensiero puro ha ancora qualche peso oggi? O l’antica ragione teorica  
è diventata essenzialmente strumentale? In ogni caso, scienza e tecnica sono al giorno d’oggi difficilmente separabili  
e  si  parla  a  ragione  di  technoscience.  [...]  Attualmente,  la  tecnica  o  precede  [...]  la  scienza  o  si  sviluppa  [...]  
indipendentemente. Molti ricercatori credono perfino, più che mai, che sia autonoma, che evolva secondo una sua  
propria razionalità, e di conseguenza al di fuori del controllo umano.

Ad integrazione delle “definizioni” di computer science riportate da Gordana Dodig-Crnkovic, è utile aggiungere 
quelle raccolte da William Rapaport, in particolare perché includono anche i punti di vista di due autorevoli e 
ben conosciuti pionieri dell’informatica: Donald Knuth e Juris Hartmanis.
W.J. Rapaport, “Philosophy of Computer Science: An Introductory Course”, 2005 (citato sopra):

We surveyed the following answers that have been given to the question “What is computer science?”:
• It is a science of computers and surrounding phenomena (such as algorithms, etc.) (Newell et al. 1967).
• It is the study (N.B.: not “science”) of algorithms and surrounding phenomena (such as the computers they 

run on, etc.) (Knuth 1974).
• It is the empirical study (“artificial science”) of the phenomena surrounding computers (Newell & Simon 

1976; cf. Simon 1996).
• It is a natural science, not of computers or algorithms, but of procedures (Shapiro 2001).
• It is not a science, but a branch of engineering (Brooks 1996).
• It is the body of knowledge dealing with information-transforming processes (Denning 1985).
• It is the study of information itself (Hartmanis & Lin 1992).
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Note that several of these (especially the first two) might be “extensionally equivalent” but approach the question  
from very different perspectives: Some emphasize the computer (hardware); others emphasize algorithms, processes,  
procedures, etc. (software), or even something more abstract (e.g., information). An orthogonal dimension focuses on  
whether computer science is a science or perhaps something else (a “study”, a “body of knowledge”, an engineering  
discipline, etc.). And, of course, the name itself varies (computer science, computing science, informatics, etc.), often  
for political, not philosophical, reasons.

Inoltre, le interpetazioni più diffuse della computer science vengono messe in discussione da alcuni lavori più 
recenti di Paul Wegner e altri, che propongono un nuovo paradigma computazionale basato sulle interazioni:

The  notion  that  these  characteristics  are  inherently  ouside  the  traditional  algorithmic  conceptualization  of  
computation is the basis for  this new paradigm for  computing, built  around the unifying concept  of  interaction 
(Wegner, 2006).
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5. La natura dell’astrazione è diversa nell’informatica e nella matematica
Di tutti gli autori a cui ho fatto riferimento in queste note, Timothy Colburn si pone le domande di natura più 
marcatamente filosofica: oltre all’analisi  epistemologica e logica,  nel suo lavoro mette in rilievo i  problemi 
ontologici ed etici.
Timothy  Colburn,  “What  is  Philosophy  of  Computer  Science?”,  European  Conference  on  Computing  and 
Philosophy, 2006.

Today, study of the models of computation falls within the area computer scientists call the theoretical foundations of  
computer  science,  or  FCS. The sub-areas  of  FCS are wide-ranging and encompass myriad topics  ranging from  
automata and formal languages, to algorithms and data structures, to logic and complexity theory. If FCS includes  
computability and logic, and if these topics spawned Church’s thesis, which I call an example of philosophy of  
computer science, or PCS, are PCS and FCS then the same? I would say not [...]. The point of this is that FCS,  
despite  the  “Foundations”  descriptor,  is  simply  “pure”  computer  science,  without  the  pressing  constraints  of  
applications. To the extent that the activity of pure science is not to be identified with the philosophy of that science,  
FCS is not PCS.
[...] I first came across Turing’s classic “Computing Machinery and Intelligence.” In it, Turing, who can be regarded  
as an early philosopher of computer science, was, arguably, posing a theory in the philosophy of mind, namely the  
functional theory of mind championed by many modern cognitive scientists.
[...]  I  met  Jim  Fetzer,  a  philosopher  of  science  who  became  intensely  interested  in  verification  of  program  
correctness, or the attempt by computer scientists to prove that a program meets its specification. This seemingly  
innocuous aspect  of  computer  science methodology, under  Fetzer’s  analytical  lens,  became, almost  overnight,  a 
contentious  battlefield  when  Fetzer  made,  in  a  flagship  journal  of  computer  science,  the  (to  my  mind)  tame  
observation that  a  formal  program verification can, at  best,  prove the correctness  only of  an abstract  algorithm  
embodied by a program, and not the running program itself. I regarded this observation, though not, I thought, a  
terribly shocking one, as a paradigm example of philosophy of computer science, because it subjected a foundational  
aspect of a given science, namely program verification, to a characteristically philosophical treatment, namely the  
analysis of concepts of that science and the critical evaluation of its beliefs. 
In observing the firestorm and debate that ensued following Fetzer’s article, it occurred to me that the controversy  
seemed to result from the seeming incompatibility of two points of view regarding computer science: one looking at  
computer science as an experimental science, situated in an uncertain world where people, their behavior, and the  
vaguely  described  problems  they  have  to  solve  hold  sway;  and  one  looking  at  computer  science  as  solution  
engineering, where problems are understood and described completely in advance of their solution, which amounts to  
the application  of  perhaps  formal  procedures  in  the  accomplishing  of  that  solution,  in  much the  same way as  
mathematical reasoning, and perhaps discovery, proceeds. I attempted to reconcile these points of view by stepping  
back and seeing them both in the purview of computer science “in the large.”
[...]
My own view is that philosophy, at its core, is concerned with the concept of knowledge (epistemology), reasoning  
(logic), existence (ontology), and value (ethics), and that a “philosophy of X” addresses these concepts within the  
domain and conceptual framework of X. [...]
What, then, might be a central question for PCS? [...]  The controversy surrounding Fetzer’s paper 16 years ago  
seemed to point to friction between those who embrace a mathematical paradigm for computer science and those who  
see computer science as more of an empirical discipline. [...] I have come to regard computer science as a discipline  
non-subservient to mathematics but dependent upon it to no more or less an extent than any other natural science is in  
the construction of needed mathematical models. Gary Shute and I have thought about the kinds of abstraction that  
occur in computer science and mathematics and found them strikingly different. Since mathematics and its methods  
have been well ensconced for centuries, then perhaps the abstraction methods that are used in software development  
are  philosophically  novel?  And if  not,  have these abstraction  methods  been  employed  before in  other  areas  of  
inquiry? These, at least for Shute and I, are current central questions in PCS.
[...]
Finally, what is the relationship between abstraction and ontology in software development? What is the ontological  
status of an object in a running object-oriented program? What kinds of objects are involved in a computational  
process? Do they depend on the kinds of objects described in a source program? Nearly 60 years ago, right around  
the dawn of the age of digital electronic computation, the philosopher W. V. O. Quine made a radical claim for the  
time. In trying to deal with conundrums involving existence, and in adjudicating among various philosophies of  
mathematics, he said “To be is to be the value of a bound variable.” His point was that one’s language has much to do  
with one’s ontology. He was quick to say that such a formula cannot say what exists, but only what a given theory  
says exists. As object-oriented programmers, our language says that things as various as shopping carts, chat rooms,  
and network sockets exist, in some sense, in our computational processes. Have we, in 60 years, come any closer to  
saying what there is in a computational process? Do our powers of abstraction as programmers have any effect on  
what there is? I believe that PCS should have something to say about this.
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Probabilmente è necessaria una preparazione filosofica di base per cogliere pienamente la portata dell’analisi di 
Colburn, inquadrandola nel dibattito filosofico che ha attraversato un paio di millenni. Almeno a livello intuitivo, 
comunque,  se  consideriamo  la  struttura  delle  tecnologie  informatiche,  che  nascono  dalla  commistione  di 
componenti fisiche (hardware) ed entità immateriali (software), e se ne teniamo presente l’impatto sulla realtà, 
possiamo anche intuire come si riproponga in una forma nuova il dualismo conosciuto dai filosofi che nel corso 
dei secoli hanno affrontato la dicotomia mente-corpo. Alcuni problemi di natura filosofica, inoltre, sono destinati 
ad avere importanti conseguenze sul piano pratico. È il caso dell’ontologia del software, che nella sostanza sta 
alla  base  delle  recenti  controversie  in  sede  di  Commissione  e  Parlamento  Europeo,  intese  a  definirne 
l’interpretazione dal punto di vista giuridico: il software è una macchina, quindi brevettabile, oppure è un’opera 
di ingegno, a cui si applicano i diritti d’autore? Qual’è la vera natura del software, separato da ogni specifica 
macchina da cui potrebbe essere eseguito?
Un estratto da un altro intervento di Colburn nell’ambito della stessa conferenza distingue invece l’astrazione in 
matematica dall’astrazione in informatica.
Timothy Colburn & Gary Shute, “Abstraction in Computer Science”, European Conference on Computing and 
Philosophy, 2006.

All  legitimate  sciences  build  and  study  mathematical  models  of  their  subject  matter.  These  models  are  usually  
intended  to  facilitate  the  acquisition  of  knowledge  about  an  underlying  concrete  reality.  Their  role  is  one  of  
supporting scientific reasoning in an attempt to discover explanations of observed phenomena. Of course, empirical  
sciences also employ nonmathematical models through arrangements of experimental apparatus by which hypotheses  
concerning  the  nature  of  physical,  or  perhaps  social,  reality  are  tested  in  an  effort  to  uncover  explanatory  or  
descriptive laws of nature. 
Traditional empirical sciences are thus concerned with both concrete models in the form of experimental apparatus,  
and abstract models in the form of mathematics. Computer science, insofar as it  is  concerned with software, is  
distinguished  from the  empirical  sciences  in  that  the  only models  it  builds  and  studies  are  abstractions.  Since  
mathematics is also distinguished from the empirical sciences in that the types of models it builds and studies are 
abstractions,  one  may  be  tempted  to  infer  that  there  is  a  close  relationship  between  computer  science  and  
mathematics, even to infer that computer science is a subspecies of mathematics. We show that this is only a surface  
similarity,  and  that  the  fundamental  nature  of  abstraction  in  computer  science  is  quite  different  from  that  in  
mathematics.
[...]
We argue that the primary abstract subject matter of mathematics is  inference patterns, while the primary abstract 
subject  matter  of  computer  science is  interaction patterns.  This  is  a  crucial  difference,  and shapes  the kind  of  
abstraction used in the two disciplines.
[...] the central activity of computer science is the production of software, and this activity is characterized primarily  
not by the creation and exploitation of inference patterns, but by the modeling of interaction patterns. The kind of  
interaction involved depends upon the level of abstraction used to describe programs. At a basic level, software  
prescribes the interacting of a certain part  of computer memory, namely the program itself,  and another part  of  
memory,  called  the program data,  through explicit  instructions carried out  by a  processor.  At  a  different  level,  
software  embodies  algorithms  that  prescribe  interactions  among  subroutines,  which  are  cooperating  pieces  of  
programs. At a still different level, every software system, whether it is an operating system, a networked system  
distributed  over  multiple  machines,  or  a  single  user  program,  is  a  carefully  orchestrated  interaction  of  entities  
variously called tasks, threads, or processes. Today’s extremely complex software is possible only through abstraction  
levels  that  leave  machine-oriented  concepts  behind.  Still,  these  levels  are  used  to  describe  interaction  patterns,  
whether they be between software objects or between a user and a system.
[...] The formalism of mathematics is relatively monolithic, based on set theory and predicate calculus. [...] Computer  
science, as we have seen, is about interaction patterns. The myriad kinds of such patterns, and the injection into them  
of the human element,  leads to  a  formalism of  computer  science that  is  pluralistic and  multilayered,  involving 
multiple  programming  languages,  alternative  software  design  notations,  and  diverse  system interaction  patterns  
embodied by language compilers, operating systems, and networks.
[...]
Any science succeeds in part  by constructing formal mathematical models of their subject matter that eliminate  
inessential  details.  Inasmuch as  such details  constitute  information,  we might  call  such elimination  information 
neglect.  It  proceeds by dropping information from consideration as though it  does not exist.  Computer  science,  
however, cannot afford to treat its information this way. It must use abstraction to manage the complexity involved in  
modeling ever increasing kinds of interaction. Computer science is therefore distinguished from mathematics in the  
use of a kind of abstraction that computer scientists call information hiding. The complexity of behaviour of modern 
computing devices makes the task of programming them impossible without abstraction tools that hide, but do not  
neglect,  details  that  are  essential  in  a  lower-level  processing  context  but  inessential  in  a  software  design  and  
programming context.
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Due punti vanno comunque tenuti presenti, a mio giudizio, nell’interpretare questi passi. Primo punto: non è 
esattamente vero che l’astrazione  in  informatica  non “trascura”,  ma semplicemente  “nasconde” i  dettagli.  I 
modelli  dell’informatica,  come quelli di  ogni altra scienza, per quanto complessi, eliminano del tutto alcuni 
dettagli. Altrimenti non sarebbero dei modelli, ma sarebbero la realtà stessa. Quello che succede, in informatica, 
è che coesistono livelli di astrazioni diversi, e non solo per finezza di risoluzione, ma anche per il punto di vista 
che  rappresentano  (questo  è  ben  presente  nella  programmazione  orientata  agli  oggetti).  Secondo  punto:  se 
confrontiamo la matematica e l’informatica in questi termini, significa che scegliamo la prospettiva delle scienze 
“empiriche”, quindi guardiamo alla matematica come matematica applicata, i cui modelli trascurano determinati 
aspetti della realtà modellata a vantaggio di altri. Secondo l’accezione della matematica come scienza “pura”, 
infatti, questo problema non si pone, in quanto le strutture studiate sono precisamente gli oggetti di studio, non i 
modelli di qualche altra entità.
Alcuni passi sono argomentati più chiaramente in un articolo successivo, di cui qui riprendo alcuni estratti ad 
integrazione di quanto già riportato sopra.
Timothy Colburn & Gary Shute, “Abstraction in Computer Science”, Minds and Machines, 17(2), 2007.

Computer  science  is  rich  with  references  to  various  entities  characterized  as  abstract and  various  activities 
characterized as abstraction. Programming, for example, involves the definition of abstract data types. Programming 
languages  facilitate  varying  levels  of  data  abstraction and  procedural  abstraction.  Language  architects  specify 
abstract machines. One computer science textbook even characterizes its subject matter as the science of ‘concrete  
abstractions’ (Hailperin et al. 1999). A philosophy of computer science should be able to characterize abstraction as it  
occurs in computer science, and also to relate it to abstraction as it occurs in its companion, mathematics.
[...]
In summary, abstraction has been characterized in philosophy, mathematics, and logic as the process of eliminating  
specificity by ignoring certain features.
[...]
The interaction patterns that are at once the most critical from a usability point of view and the most difficult to  
model using abstraction tools are those interaction patterns involving the human element. This means that there are  
aspects of computer science that cannot be “abstracted away” to make them cleaner, as is done in mathematics. This  
point is all too often ignored by those who emphasize a mathematical paradigm for computer science. User interface  
aspects of programs, because they are unpredictable and subject to exceptional behavior, are sometimes characterized  
as second-class interaction patterns when compared to the interaction patterns of “more interesting” or “cleaner”  
internal algorithms and data structures, which are much more amenable to mathematical analysis. As we remarked in  
the Introduction and will elaborate below, abstraction in mathematics often involves a kind of “information neglect”  
that conveniently ignores aspects of its subject matter that are considered irrelevant. Unfortunately, in most cases it is  
not possible to consider user interaction with software irrelevant, and the unpredictability of such interaction is a fact  
of life for the software modeler. As a corollary, a “pure” computer science that analyses only clean, human-free  
interaction patterns is impoverished at best.
[...] So abstraction in mathematics facilitates inference, while abstraction in computer science facilitates the modeling  
of interaction. The difference between these activities can also be seen by considering the respective disciplines’ use  
of formalism.
[...]
Moreover, changes in technology drive changes in computer science ontology, with the result being that the kinds of  
things that make up the interaction patterns are constantly changing.
[...]
[...] there are at least two kinds of abstraction in mathematics: the emphasis of form over content, and the neglect of  
certain features in favor of others.

Sul  piano  didattico  è  interessante  osservare  che  alcuni  importanti  proposte  di  corsi  introduttivi  alla 
programmazione (e all’informatica) mettono al centro del programma le forme di astrazione. Esempi notevoli:
M. Hailperin, B. Kaiser, K. Knight, “Concrete Abstractions”;
R. Shackelford, “Introduction to Computing and Algorithms”;
B. Liskov, J. Guttag, “Program Development in Java”.
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6. Gli sviluppi dell’informatica richiedono l’adozione di un nuovo paradigma basato sulle interazioni
Come accennato precedentemente,  Peter Wegner e altri mettono in discussione i modelli più tradizionali della 
computer science, in particolare per quanto riguarda il concetto di algoritmo. Wegner propone uno spostamento 
del paradigma computazionale che ponga al centro l’idea di  interazione. Ecco come i curatori di un volume 
impostato sul concetto di interazione introducono questo nuovo punto di vista.
D. Goldin, S.A. Smolka & P. Wegner, “Interactive Computation: The New Paradigm”, Springer-Verlag, 2006.

Interaction is an emerging paradigm of models of computation that reflects the shift in technology from mainframes  
to networks of intelligent agents, from number-crunching to embedded systems to graphical user interfaces, and from  
procedure-oriented to object-based distributed systems. Interaction based models differ from the Turing-machine-
based algorithmic models of the 1960s in interesting and useful ways:
Problem Solving: Models of interaction capture the notion of performing a task or providing a service, rather than  
algorithmically producing outputs from inputs.
Observable Behavior: In models of interaction, a computing component is modeled not as a functional transformation  
from input  to  output,  but  rather  in  terms  of  observable  behavior  consisting  of  interaction  steps.  For  example,  
interactions may consist  of interleaved inputs and outputs modeled by dynamic streams; future input values can  
depend on past output values.
Environments: In models of interaction, the world or environment of the computation is part of the model and plays  
an active part in the computation by dynamically supplying the computational system, or agent, with inputs, and  
consuming  the  output  values  the  system  produces.  The  environment  cannot  be  assumed  to  be  static  or  even  
effectively computable; for example, it may include humans or other real-world elements.
Concurrency: In models of interaction, computation may be concurrent; a computing agent can compute in parallel  
with its environment and with other agents.
The interaction paradigm provides a new conceptualization of computational phenomena that emphasizes interaction  
rather than algorithms. Concurrent, distributed, reactive, embedded, component-oriented, agent-oriented and service-
oriented systems all exploit interaction as a fundamental paradigm. This book thus challenges traditional answers to  
fundamental questions relating to problem solving or the scope of computation. It aims to increase the awareness of  
interaction  paradigms  among  the  wider  computer-science  community  and  to  stimulate  practice  and  theoretical  
research in interactive computation.

Qui di seguito riporto alcuni estratti di un articolo. È interessante notare come, a giudizio degli autori, l’adozione 
del nuovo paradigma comporta anche un cambiamento di natura epistemologica.
Dina  Goldin  & Peter  Wegner,  “The  Interactive  Nature  of  Computing:  Refuting  the  Strong  Church-Turing 
Thesis”, Minds and Machines, 18(1), 2008.

The classical view of computing positions computation as a closed-box transformation of inputs (rational numbers or  
finite strings) to outputs. According to the interactive view of computing, computation is an ongoing interactive  
process rather than a function-based transformation of an input to an output. Specifically, communication with the  
outside  world  happens  during  the  computation,  not  before  or  after  it.  This  approach  radically  changes  our  
understanding of what is computation and how it is modeled.
[...]
In  the  computer  science  community,  it  is  generally  understood  that  [the  Curch-Turing  Thesis]  applies  only  to  
effective computation, in Turing’s sense of the word. However, it is not always appreciated that [the Curch-Turing  
Thesis]  applies  only  to  computation  of  functions,  rather  than  to  all  computation.  Function-based  computation  
transforms a finite input into a finite output in a finite amount of time, in a closed-box fashion. By contrast, the  
general notion of computation includes arbitrary procedures and processes—which may be open, non-terminating,  
and involving multiple inputs interleaved with outputs.
The Strong Church-Turing Thesis, which asserts that TMs capture all effective computation, is generally considered  
to be equivalent to the original [the Curch-Turing Thesis ...].
All versions of the [Strong Church-Turing Thesis] historically evolve from the assumption that all computation is  
function-based, or algorithmic; by this, we mean that its job is to transform a finite input into a finite output in a finite  
amount  of  time.  We believe  it  is  time to  recognize  that  today’s  computing  applications,  such  as  web services,  
intelligent agents, operating systems, and graphical user interfaces, are interactive rather than algorithmic; their job is  
to provide ongoing services over time (Wegner 1997).
According  to  the  interactive  view of  computation,  interaction  (communication  with  the  outside  world)  happens  
during the computation, not before or after it. Hence, computation is an ongoing process rather than a function-based  
transformation of an input to an output. The interactive approach represents a paradigm shift that redefines the nature  
of computer science, by changing our understanding of what computation is and how it is modeled. This view of  
computation is not modeled by [Turing Machines], which capture only the computation of functions; alternative  
models are needed.
[...]
The theoretical nature of computing is currently based on what we call the mathematical worldview. We discuss this 
worldview next, contrasting it with the interactive worldview. [...]
Mathematical worldview: All computable problems are function-based.
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[...]
The mathematical worldview can be contrasted with the interactive worldview, where computation is viewed as an  
ongoing process that transforms inputs to outputs—e.g., control systems, or operating systems. The question “what  
do operating systems compute?” has been a conundrum for the adherents of the mathematical worldview, since these  
systems never terminate, and therefore never formally produce an output. Yet it is clear that they do compute, and  
that their computation is both useful and important to capture formally.
While  the  Church-Turing  Thesis  remains  true,  the  mathematical  worldview  no  longer  reflects  the  nature  of  
computational problems [...].
The interactive approach to conceputalizing the notion of computation and of computable problems is distinct from  
either the theory of computation and the concurrency theory. It represents a paradigm change to our understanding of  
what is computation, and how it should be modeled. This conceptualization of computation allows, for example, the  
entanglement  of  inputs  and  outputs,  where  later  inputs  to  the  computation  depend  on  earlier  outputs.  Such  
entanglement is impossible in the mathematical worldview, where all inputs precede computation, and all outputs  
follow it.
[...]
Algorithms originated in mathematics as “recipes” for carrying out function-based computation, that can be followed  
mechanically. Algorithms capture what it means for a computation to be effective.
[...]
The 1960s decision by theorists and educators to place algorithms at the center of CS was clearly reflected in early  
undergraduate textbooks. However, there was no explicit standard definition of an algorithm and various textbooks  
chose to define this term differently.
[...]
The result is a dichotomy, where the computer science community thinks of algorithms as synonymous with the  
general notion of computation (“what computers do”) yet at the same time as being equivalent to Turing Machines.  
This dichotomy can be found in today’s popular textbooks [...]. Their discussion of algorithms is very broad, but the  
equivalence with [Turing Machines] is taken for granted [...].
This dichotomy is canonized in the Strong Church-Turing Thesis, which can be found throughout the computing  
literature [...]: “A TM can do anything that a computer can do.”
[...]
The Paradigm Shift to Interaction
Sequential  interaction  is  only  one  form  of  interactive  computation.  The  paper  “Interactive  Foundations  of  
Computing” by one of the authors (Wegner 1998) explores more general notions of interaction, including analog,  
real-time,  and  multiagent  interaction.  It  conjectures  that  these  forms  of  interaction  are  more  expressive  than  
sequential interaction. It shows that the semantics of streams cannot be expressed by that of strings, that interaction  
includes  nonfunctional  non-algorithmic  behavior,  that  persistent  agents  are  not  algorithmically  describable,  that  
extending algorithms to interaction transforms “dumb” to “smart” problem-solving behaviors. It furthermore shows  
that  increased expressive power may in many cases  decrease or  eliminate  formalizability—the ability  to state  a  
problem (or describe a computing system) formally and completely. Dijkstra’s “GOTO considered harmful” article  
(Dijkstra  1968) suggested eliminating the GOTO statement  because its  expressiveness  decreased formalizability.  
Interaction likewise increases expressiveness at the expense of formalizability, and could therefore be considered  
harmful in the Dijkstra sense. We believe that expressiveness should be encouraged and that neither interaction nor  
GOTO statements should be considered harmful because they decrease formalizability.
Interactive systems are incomplete in the sense that they cannot be modeled by sound and complete first-order logics.  
Incompleteness contributes to expressiveness at  the expense of formalizability, supporting non-formalizable error  
checking, emergent behavior, open systems, object-oriented programming, and robustness. Programming in the large  
produces non-formal interactive behaviors that are more expressive than algorithmic programming in the small. The  
paradigm  shift  from  algorithms  to  interaction  suggests  that  mathematical  formalizability  must  necessarily  be  
restricted in realizing important goals of expressiveness. Interactive models extend formal rationalist systems that  
limit  expressiveness  to  non-formal  empiricist  systems that  are  more expressive (Wegner  1999).  Thus rationalist  
mathematical arguments that formalizability is an essential tool of problem solving must be eliminated in achieving  
the broader goal of empiricist interactive problem solving.

L’intepretazione  didattica  di  questo  approccio,  classificabile  nell’ambito  object-first,  ma  specificamente 
caratterizzato, è promossa in particolare da Lynn Stein, di cui riporto un estratto della prefazione di un libro.
Lynn Stein, “Interactive Programming in Java”, Franklin W. Olin College of Engineering, 2003.

Interactive  Programming  shifts  the  foundation  on  which  the  teaching  of  Computer  Science  is  based,  treating  
computation as interaction rather than calculation [...]. Interactive Programming provides an alternate entry into the 
computer  science  curriculum.  It  teaches  problem decomposition,  program design,  construction,  and  evaluation,  
beginning with the following premises: A program is a community of interacting entities. Its “pieces” are these  
implicitly or explicitly concurrent entities: user interfaces, databases, network services, etc. They are combined by  
virtue of ongoing interactions which are constrained by interfaces and by protocols. A program is evaluated by its  
adherence to a set of invariants, constraints, and service guarantees—timely response, no memory leaks, etc.
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7. L’informatica può considerarsi una scienza nella misura in cui adotta il metodo scientifico
Per Neil  Stewart,  la  chiave della  caratterizzazione dell’informatica come scienza sta  nel  rigore del  metodo. 
Nell’estratto che segue, egli critica alcune debolezze della pratica corrente alla luce delle condizioni formulate da 
Carl Popper riguardo al metodo scientifico (razionalizzazione, ripetibilità e falsificabilità), ma riconoscendo nei 
problemi che l’informatica affronta tutte le potenzialità per una pratica scientifica.
Neil F. Stewart, “Science and Computer Science”, ACM Computing Surveys, 27(1), 1995.

It  is  clear  that  there are  components  of  computer  science that  could be viewed as  subfields  of  mathematics  or  
engineering. Indeed, competent work in theoretical computer science meets rigorous mathematical standards, and  
competent work in applied computer science meets the standards of good-quality engineering work (prototypes are  
built, proof-of-concept projects are conducted, and results are evaluated on the basis of their usefulness in practice).  
The open question is the extent to which the remaining parts of computer science can be viewed as science. To study  
this question is not necessarily to engage a sterile debate: it may be, for example, that the field is not yet a science,  
but that it could become one, and that certain policy changes could accelerate this process.
Hartmanis argues that computer science is different enough from the other sciences to permit different standards in  
experiemental work, and that computer science “demos” can be viewed as a replacement for the experimentation  
found in other fields. I do not agree. Computer science is, or has the potential to be, a science similar in character to  
physics and the other naturale sciences. However, its traditions, in the area of experimentation and formulation of  
theories, may delay its acceptance and inhibits its development (as a science).
It is stated [...] that in computer science there are no “... new theories developed to reconcile theory with experimental  
results that reveal unexplained anomalies or new, unexpected phenomena...” [... However,] there are many areas of  
computer science where we might propose theories that could be decided on the basis of experiment. For example,  
what we understand as “intelligence” is very poorly understood. It seems reasonable, therefore, to introduce various  
theories of intelligence, or models of intelligent behaviour, and to test them using the methods and ethics of modern  
experimental science.
[...]
One important answer to the question of what constitutes science was given by Popper [...].
The first condition given by Popper is this: even to engage in rational discourse requires that we state clearly the  
problem we wish to solve. [...]
The second requirement, relating to empirical science, is that experiments should be repeatable. [...]
Finally, a scientific system must, at least in principle, be falsifiable. [...]
For many subfields of computer science, it cannot be said that they meet even Popper’s first condition, defining  
“rational discussion”. For example, in computer vision, the problem is frequently left unstated; indeed, there is often  
no distinction made between the problem to be solved and the algorithm that solves it. [...]
More recently, the introduction of Abstract Data Types can be viewed as a significant step towards putting computer  
science on a scientific footing, since it directly addresses the question of problem definition. [...]
Popper’s second condition is that experiments should be repeatable. Here too computer science is far from the best  
tradition of scientific work. Reading about the results of putatively scientific experiment in computer science, it is  
almost certain that there will not be enough information given to permit repetition, and there will therefore be no  
possibility of refuting the results. [...]

Punto  abbastanza  interessante:  Neil  Stewart  osserva  anche  che  alcuni  problemi  affrontati  dall’informatica 
riguardano l’interpretazione della realtà naturale, per esempio quando si occupa dei modelli della cognizione o 
dell’intelligenza, e in questo senso il celebre test di Turing propone un esperimento propriamente scientifico, che 
potrebbe essere vagliato sulla base dei principi di Popper. Pertanto, questi problemi appartengono all’ambito 
scientifico  inteso  nel  senso  più  puntuale.  Inoltre,  pur  tenendo  conto  della  natura  inestricabilmente 
interdisciplinare  di  questo  tipo  di  studi,  messa  in  luce  da  Gordana  Dodig-Crnkovic  come  caratteristica 
ineluttabile  delle  scienze  moderne,  osservazioni  analoghe  potrebbero  estendersi  a  gan  parte  dei  modelli  di 
simulazione dei fenomeni naturali, sociali o economici, realizzati con mezzi informatici.
In una prospettiva didattica, può essere interessante osservare a questo proposito che l’attività di debugging di un 
programma,  cioè la  diagnostica e la  correzione degli  errori,  se  svolta  in  maniera  strutturata,  esplicitando le 
ipotesi  (teorie  in  miniatura  sulle  cause  dell’errore),  motivando  i  test  (pianificazione  di  esperimenti  per 
confermare o invalidare le ipotesi) e argomentando le conclusioni che se ne traggono dagli esiti, può essere 
sfruttata come palestra per esercitare il metodo scientifico.
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8. Natura della disciplina e rilevanza educativa
Qualche ulteriore spunto può essere tratto da un articolo di J.  Hromkovič, che si è occupato anche di aspetti 
didattici a livello accademico e nella scuola superiore. Le accezioni matematica, scientifica e ingegneristica, già 
affrontate da A.H. Eden, sono interpretate con delle sfumature diverse in questo articolo, di cui vengono riportati 
alcuni estratti qui di seguito. Inoltre, l’autore riflette sul ruolo formativo della disciplina, in relazione alla natura 
stessa che ancora sfugge a  un semplice inquadramento,  non solo in  quanto palestra  di metodo e approccio 
interdisciplinare, ma anche considerando gli aspetti connessi al linguaggio già sottolineati da G.J. Sussman.
Juraj Hromkovič, “Contributing to General Education by Teaching Informatics”, International Conference on 
Informatics in Secondary Schools – Evolution and Perspectives (ISSEP), 2006.

What Is Informatics?
Let us first attempt to answer the question “What is computer science?”
It is difficult to provide an exact and complete definition of a scientific discipline. A commonly accepted definition  
is:  Computer  science  is  the  science  of  algorithmic  processing,  representation,  storage  and  transmission  of  
information.
This definition presents information and algorithm as the main objects investigated in computer science. However, it  
neglects  to  properly  reveal  the  nature  and  methodology  of  computer  science.  Another  question  regarding  the  
substance of computer science is: “To which scientific discipline does computer science belong? Is it a meta science  
such as mathematics and philosophy, a natural science or an engineering discipline?”
An answer to this question serves not only to clarify the objects of the investigation, it also must be determined by the  
methodology  and  contributions  of  computer  science.  The  answer  is  that  computer  science  cannot  be  uniquely  
assigned to any of these disciplines. Computer science includes aspects of mathematics, and natural sciences as well  
as of engineering [...].
Similar  to  philosophy  and  mathematics,  computer  science  investigates  general  categories  such  as  determinism, 
nondeterminism, randomness, information, truth, untruth, complexity, language, proof, knowledge, communication,  
approximation, algorithm, simulation, etc. and contributes to the understanding of these categories. Computer science 
has shed new light on and brought new meaning to many of these categories.
A natural  science,  in  contrast  to  philosophy  and  mathematics,  studies  concrete  natural  objects  and  processes,  
determines the border between possible and impossible and investigates quantitative rules of natural processes. It  
models,  analyzes,  and  confirms  the  credibility  of  hypothesized  models  through  experiments.  These  aspects  are  
similarly prevalent in computer science. The objects are information and algorithms (programs, computers) and the  
investigated  processes  are  the  physically  existing  computations.  Let  us  try  to  document  this  by  looking  at  the  
development of computer science. Historically, the first important research question in computer science was the  
following  one  with  philosophical  roots.  “Are  there  well-defined  problems  that  cannot  be  automatically  (by  a  
computer, regardless of the computational powers of contemporary computers or futuristic ones) solved?”
Efforts to answer this question led to the founding of computer science as an independent science. The answer to this  
question is positive. We are now aware of many practical problems that we would like to solve algorithmically, but  
which are  not  algorithmically  solvable.  This conclusion is based on a  sound mathematical  proof  of  algorithmic  
nonsolvability (i.e., on a proof of the nonexistence of algorithms solving the given problem), and not on the fact that  
no algorithmic solution has been discovered so far.
After developing methods for classifying problems according to their algorithmic solvability, one asks the following  
scientific question: “How difficult are concrete algorithmic problems?”
This  [...]  difficulty  is  measured in  the amount  of  work necessary and sufficient  to  algorithmically  compute the  
solution for a given problem instance. One learns of the existence of hard problems, for which computing solutions  
needs  energy  exceeding  that  of  the  entire  universe.  There  are  algorithmically  solvable  problems  such  that  the  
execution of any program solving them would require more time than has passed since the Big Bang. Hence the mere  
existence of a program for a particular problem is not an indication that this problem is solvable within practical  
limits.  Efforts to classify problems into practically solvable (tractable) and practically insolvable led to the most  
fascinating scientific discoveries of theoretical computer science.
As an example, let us consider randomized algorithms [...]. In contrast to deterministic programs that reliably deliver  
the right  solution  for  any  input,  randomized  programs may give  erroneous  results.  The  aim is  to  suppress  the  
probability of such false computations, which under some circumstances means to decrease the proportion of false  
computations.
At first sight, randomized programs may seem unreliable, as opposed to their deterministic counterparts. Why then  
the  necessity  for  randomized  programs?  There  are  important  problems  whose  solution  by  the  best  known  
deterministic algorithm require more computer work than one can realistically execute. Such problems appear to be  
practically insolvable. But a miracle can happen: this miracle can be a randomized algorithm that solves the problem  
within minutes, with a minuscule error probability of one in a trillion. Can one ban such a program as unreliable? A  
deterministic program that requires a day’s computer work is more unreliable than a randomized program running in  
a few minutes, because the probability that a hardware error occurs during this 24 hours of computation is much  
higher than the error probability of the fast randomized program.
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A concrete  example of  utmost  practical significance is primality testing. In  the ubiquitous use of  cryptographic  
public-key protocols, huge prime numbers (approximately 500 digits long) must be generated. The first deterministic  
algorithms for primality testing were based on testing the divisibility of the input  n. Alone, the number of primes 
smaller than [...] such huge values of  n exceeds the number of protons in the universe. Hence, such deterministic 
algorithms are  practically  useless.  Recently,  a  new deterministic algorithm for primality testing running in time  
O(m12) for n of binary length m was developed. But it needs to execute more than 10 32 computer instructions in order 
to  test  a  500-digit  number  and  so  the  amount  of  time since  the  Big  Bang is  not  sufficient  to  execute  such  a  
computation on the fastest computers. However, there are several randomized algorithms that test primality of such  
large numbers within minutes or even seconds on a regular PC.
Another spectacular example is a communication protocol for comparison of the contents of two databases, stored in  
two  distant  computers  [...].  For  a  database  with  10 16 bits,  this  would  prove  to  be  tedious.  A  randomized 
communication protocol can test this equivalence using a message of merely 2000 bits. The error probability of this  
test is less than one in the number of all protons in the universe.
How is this possible? It is difficult to explain this without some basic knowledge of computer science. The search for  
the explanation behind the strengths of randomized algorithms is a fascinating research project, going into the deepest  
fundamentals of mathematics, philosophy, and natural sciences. Nature is our best teacher, and randomness plays a  
larger role in nature than one would imagine.
Computer scientists can cite many systems where the required characteristics and behaviors of such systems are  
achievable only through the concept of randomization. In such examples, every deterministic reliable system is made  
up of billions of subsystems, and these subsystems must interact correctly. Such a complex system, highly dependent  
on numerous subcomponents, is not practical. In the case that an error occurs, it would be almost impossible to detect  
it. Needless to say, the costs of developing such a system is also astronomical. On the other hand, one can develop  
small randomized systems with the required behavior. Because of their small size, such systems are inexpensive and  
the work of their components is easily verifiable. And the crucial point is that the probability of a wrong behavior is  
so minuscule that it is negligible.
The presented concept of randomized algorithms is only one among many concepts developed in informatics that  
influence our view on fundamentals of science at all.
Despite  its  above-illustrated  scientific  aspects,  computer  science  is  a  typical  problem-oriented  and  practical  
engineering discipline for many scientists. Computer science not only includes the technical aspects of engineering  
such as: organization of development processes (phases, milestones, documentation), formulation of strategic goals  
and limits, modeling, description, specification, quality assurance, tests, integration into existing systems, reuse, and  
tool support, it also encompasses the management aspects such as:  team organization and team leadership, costs  
estimation, planning, productivity,  quality management,  estimation of time plans and deadlines, product release,  
contractual obligations, and marketing.
A computer scientist should also be a true pragmatic practitioner. When constructing complex software (for instance  
writing programs of several hundred thousand instructions) or hardware systems, one must often make decisions  
based on one’s experience, because one does not have any opportunity to model and analyze the highly complex  
reality.  All  the features  of engineering are involved in  the design and in the development  of final products.  To  
mention at least some of them – modularity in the design processes, testing reliability in a structured way, etc.
Why Teach Computer Science?
Considering our definition of computer science, one may get the impression that the study of computer science is too  
difficult  for  secondary school.  One needs  mathematical  knowledge  as  well  as  the understanding  of  the  way of  
thinking in natural sciences, and on topofthat, one needs to be able to work like an engineer. This may really be a  
strong requirement, but it is also the greatest advantage of this education. The main drawback of current science is in  
its  overspecialization,  which  leads  to  an  independent  development  of  small  subdisciplines.  Each  branch  has  
developed its own language, often incomprehensible even for researchers in a related field. It has gone so far that the  
standard way of arguing in one branch is perceived as superficial and inadmissible in another branch. This slows  
down the development of interdisciplinary research. Computer science is interdisciplinary at heart. It is focused on  
the search for solutions for problems in all areas of sciences and in everyday life, wherever the use of computers is  
imaginable. While doing so, it  employs a wide spectrum of methods, ranging from precise formal mathematical  
methods  to  experience-based  “know-how”  of  engineering.  The  opportunity  to  concurrently  learn  the  different  
languages  of  different  areas  and  the different  ways of  thinking,  all  in  one discipline,  is  the most  precious gift  
conferred on a computer science student.
Teaching informatics in secondary or even primary schools has to start with programming. Programming is more than  
just a useful skill of a computer scientist. Learning programming means learning a language of communication with  
technical systems, learning to tell a machine what activity we would like to have from it. Since machines do not have  
any intelligence, our instructions must be so clearly and unambiguously formulated that no mistake can arise. In this  
way, the pupils learn to describe ways and methods for achieving aims that can be correctly followed by everybody  
without needing to provide the knowledge why they successfully achieve these goals. The development of this skill  
essentially contributes to the pupils’ natural language skills by motivating pupils to properly think about how to best  
express what they would like to communicate. After supplementing the programming courses with some elementary  
data structures and algorithms, we propose to switch to the fundamentals.
Why  teach  the  fundamentals?  Theoretical  computer  science  is  a  fascinating  scientific  discipline.  Through  its  
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spectacular results and high interdisciplinarity, it has made great contributions to our view of the world. However,  
theoretical computer science is not the favorite subject of university students, as statistics would confirm. Many  
students even view theoretical computer science as a hurdle that they have to overcome in order to graduate. There  
are several reasons for this widespread opinion. One reason is that amongst all areas of computer science, theoretical  
computer science is the mathematically most demanding part and hence the lectures on theoretical fundamentals  
belong to the hardest courses in computer science. Not to forget, many computer science students start their study  
with a wrong impression of computer science, and many lecturers of theoretical computer science do not present their  
courses in a sufficiently attractive way. Excessive pressure for precise representation of the minute technical details of  
mathematical proofs plus a lack of motivation, a lack of relevance, a lack of informal development of ideas within the  
proper framework and a lack of direct implementation and usage, can ruin the image of any fascinating field of  
science. Is theory really suitable at the secondary school level? Is it so important that we have to invest huge efforts to  
master its teaching? We try to answer both these questions affirmatively.
[...] There are several important reasons for the indispensability of theoretical fundamentals in the study of computer  
science [...]:
Philosophical depth
Theoretical computer science explores knowledge and develops new concepts and notions that influence science at its  
very  core.  Theoretical  computer  science  gives partial  or  complete  answers  to  philosophical  questions [...].  It  is 
important  to  note  that  many  of  these  questions  cannot  be  properly  formulated  without  the  formal  concepts  of  
algorithm and computation. Thus, theoretical computer science has enriched the language of science through these  
new terms, contributing to its development. Many known basic categories of science, such as determinism, chance,  
and nondeterminism have gained new meanings, and through this, our general view of the world has been influenced.
Applicability and spectacular results
Theoretical computer science is relevant to practice. On one hand, it provides methodological insights that influence  
our first strategic decision over the processing of algorithmic problems. On the other hand, it provides particular  
concepts and methods that can be applied during the whole process of design and implementation. Moreover, without  
the knowledge and concepts of theoretical computer science many applications would be impossible. [...] This not  
only shows that, thanks to theory, things are made possible though previously they were believed to be impossible, it  
also shows that research in theoretical computer science is exciting and full of surprises, and so one can be inspired  
and enthused by theoretical computer science.
Lifespan of knowledge
Through the rapid development of technology, the world of applied computer science continuously evolves. Half of  
the existing information about software and hardware products is obsolete after 5 years. Hence, an education that is  
disproportionately  devoted  to  system  information  and  current  technologies,  does  not  provide  appropriate  job 
prospects. Whereas the concepts and methodology in theoretical computer science have a longer average lifespan of  
several decades. Such knowledge will serve its owner well for a long period of time.
Interdisciplinary orientation
Theoretical computer science is interdisciplinary in its own right and can take part in many exciting frontiers of  
research  and  development  — genome  projects,  medical  diagnostics,  optimization  in  all  areas  of  economy and  
technical sciences, automatic speech recognition, and space exploration, just to name a few. As much as computer  
science  contributes  to  all  other  fields,  it  also  benefits  from  the  contributions  from  other  fields.  The  study  of  
computations on the level of elementary particles, [e.g.,] whose behavior follows the rules of quantum mechanics,  
focuses on the efficient execution of computations in the microworld whose execution in the macroworld has failed.
Way of thinking
Mathematicians  attribute  the  special  role  mathematics  play  in  education  through  development,  enrichment  and  
shaping  the  way of  thinking,  i.e.,  through contributing  to  the  general  development  of  one’s  personality.  If  this  
contribution by mathematics is so highly regarded, then one must also acknowledge the importance of computer  
science  for  the  general  education  and  the  enrichment  of  the  way  of  thinking.  Theoretical  computer  science  
encourages creating and analyzing mathematical models of real systems and searching for concepts and methods to  
solve concrete problems. Remember that precisely understanding which features of a real system are exactly captured  
by one’s model and which characteristics are only approximated or even neglected is the main assumption for a  
success in science and engineering. Because of this,  theoretical computer science calls attention to teaching the  
evolution of mathematical concepts and models in a strong relation to real problems. Thus, by studying computer  
science, one has the chance of learning how to combine theoretical knowledge with practical experience and hence  
develop a way of thinking that is powerful enough to attack complex real-world problems. [...]
What to Teach and How to Teach It?
[...]  Computer  science courses  have to  start  with programming.  If  we want  to  build  a  language  for  instructing 
(communicating with) a machine that does not have any intelligence, and hence any ability to improvise, we have to  
be very careful. We have to teach programming as a skill to describe possibly complex behaviors by a sequence of  
clear, simple instructions [...]. One has to start with a very small number of computer instructions available and build  
new, more powerful instructions by combining the simple instructions available. In this way one not only follows the  
historical development, one also learns the principle of modularity that is fundamental for all engineering sciences.  
To be in context with other subjects, the choice of algorithmic problems in the programming course has to include  
tasks encountered in mathematics, physics, and possibly other subjects.
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The programming course can be followed by the introduction of some basic concepts of data structures and [...]  
algorithms [...]. Teaching fundamentals could start with automata theory. The reason is that finite automata provide  
the simplest  model  of  computation, and hence one can learn to  understand to  some extent,  the meaning of  the  
fundamental notions such as computation, simulation, configuration [...].
The last part of our courses of informatics in secondary schools is devoted to computability. Many peers are of the  
opinion that this is too hard at preuniversity level. Everything is a matter of didactic mastery. Our experience is that  
this topic is considered to be the most fascinating one by the pupils. They visit the core of sciences by learning what  
infinity is, that there are infinities of different sizes, and finally that there are interesting algorithmic problems that  
cannot be solved automatically (algorithmically). The pupils are fascinated because we enable them to track the  
discovery of the fundamentals of informatics and to even walk this path step by step with full understanding of the  
nature of the discovery processes.
[...]
We would like to build and influence the student’s ways of thinking. We are interested in the historical development  
of computer science concepts and ways of thinking, and the presentation of definitions, results, proofs, and methods  
is only a means to the end. Hence, we are not overly concerned about the amount of information, preferring to  
sacrifice 10 to 20% of the teaching material. In return, we dedicate more time to the motivation, aims, connection  
between practice and theoretical concepts, and especially to the internal context of the presented theory. We place  
special  emphasis  on  the  creation  of  new terms.  The  notions  and  definitions  do  not  appear  out  of  the  blue,  as  
seemingly so in some lectures using the formal language of mathematics. The formally defined terms are always an  
approximation or an abstraction of intuitive ideas. The formalization of these ideas enables us to make accurate  
statements and conclusions about certain objects and events. They also allow for formal and direct argumentation. We  
strive to explain our choice of the formalization of terms and models used and to point out the limitations of their  
usage. Learning to work on the level of terms creation (basic definitions) is very important, because most of the  
essential progress happens exactly on this level.
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9. Gli algoritmi sono il cuore della disciplina, di cui attraversano e unificano le varie ramificazioni
Un contributo di interesse anche storico, introdotto da un preambolo spiritoso nello stile dell’autore, da parte di 
uno dei  padri  dell’informatica.  In  particolare,  si  può osservare che  questo punto di  vista  si  contrappone la 
posizione più recente di Wegner e colleghi menzionata sopra.
Donald E. Knuth, “Computer Science and Its Relation to Mathematics”, The American Mathematical Monthly, 
81(4), 1974.

What is Computer Science?
Since Computer Science is relatively new, I must begin by explaining what it is all about. At least, my wife tells me  
that she has to explain it whenever anyone asks her what I do, and I suppose most people today have a somewhat  
different perception of the field than mine. In fact, no two computer scientists will probably give the same definition;  
this is not surprising, since it is just as hard to find two mathematicians who give the same definition of Mathematics.  
Fortunately it has been fashionable in recent years to have an “identity crisis,” so computer scientists have been right  
in style.
My favorite way to describe computer science is to say that it is the study of algorithms. An algorithm is a precisely-
defined sequence of rules telling how to produce specified output information from given input information in a finite  
number of steps. A particular representation of an algorithm is called a program, just as we use the word “data” to  
stand for a particular representation of “information”. Perhaps the most significant discovery generated by the advent  
of computers will turn out to be that algorithms, as objects of study, are extraordinarily rich in interesting properties;  
and furthermore, that an algorithmic point of view is a useful way to organize knowledge in general. G.E. Forsythe  
(1968) has observed that “the question ‘What can be automated?’ is one of the most inspiring philosophical and  
practical questions of contemporary civilization”.
From these remarks  we might  conclude  that  Computer  Science  should  have  existed  long  before  the  advent  of  
computers. In a sense, it did; the subject is deeply rooted in history [...].
But computers are really necessary before we can learn much about the general properties of algorithms; human  
beings are not precise enough nor fast enough to carry out any but the simplest procedures. Therefore the potential  
richness of algorithmic studies was not fully realized until general-purpose computing machines became available.
When I  say  that  computer  science is  the study  of  algorithms,  I  am singling  out  only  one  of  the  “phenomena  
surrounding  computers”  (Newell  et  al.,  1967),  so  computer  science  actually  includes  more.  I  have  emphasized  
algorithms because they are really the central core of the subject, the common denominator which underlies and  
unifies the different branches.
[...]
Is Computer Science Part of Mathematics?
[… If] we restrict our study to algorithms, isn’t this merely a branch of mathematics? [...]
The difference is in the subject matter and approach --- mathematics dealing more or less with theorems, infinite  
processes, static relationships, and computer science dealing more or less with algorithms, finitary constructions,  
dynamic relationships.
[...]
Educational side-effects.
It has been often said that a person does not really understand something until he teaches it to someone else. Actually  
a person does not  really understand something until he can teach it to a  computer, i.e., express it as an algorithm. 
“The automatic computer really  forces that precision of thinking which is alleged to be a product of any study of  
mathematics” (Forsythe, 1968). [... Several examples] have convinced me of the pedagogic value of an algorithmic  
approach; it aids in the understanding of concepts of all kinds.
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10. Un informatico ha il compito di realizzare strumenti per soddisfare le esigenze di chi dovrà usarli
Nel seguente estratto viene ben delineata una visione in un certo senso estrema, prettamente ingegneristica, 
dell’informatica. Secondo questa prospettiva perdono rilievo le motivazioni rivolte alla crescita delle conoscenze 
come fine di per se stessa, motivazioni che sono tipiche degli ambiti scientifici e matematici.
Frederick P. Brooks, Jr., “The computer scientist as toolsmith II”, Communications of the ACM, 39(3), 1996.

[The] scientist builds in order to study; the engineer studies in order to build. I submit that by any reasonable criterion  
the discipline we call “computer science” is in fact not a science but a synthetic, an engineering, discipline. We are  
concerned with making things, be they computers, algorithms, or software systems. If we perceive our role aright, we  
then see more clearly the proper criterion for success: a toolmaker succeeds as, and only as, the users of his tool  
succeed with his aid.
[...]
[As] we honor the more mathematical, abstract, and “scientific” parts of our subject more, and the practical parts less,  
we misdirect  young and brilliant  minds away from a body of  challenging and important  problems that  are  our  
peculiar domain, depriving these problems of the powerful attacks they deserve.
[...]
Especially important for us are system design problems characterized by arbitrary complexity. [...] The arbitrariness  
is  inherent  — the requirements  and constraints  spring from a  host  of  independent  minds.  [...]  These  problems  
scandalize and discourage those who approach them from backgrounds of mathematics and natural science, and for  
different reasons. Mathematicians are scandalized by the complexity — they like problems which can be simply  
formulated and  readily abstracted,  however  difficult  the  solution.  The four-color  problem is  a  perfect  example.  
Physicists or biologists, on the other hand, are scandalized by the arbitrariness. Complexity is no stranger to them.  
The deeper the physicists dig, the more subtle and complex the structure of the “elementary” particles they find. But  
they keep digging, in full faith that the natural world is not arbitrary, that there is a unified and consistent underlying  
law if they can but find it. No such assurance comforts the computer scientist. Arbitrary complexity is our lot, and  
here more than anywhere else we need the best minds of our discipline fashioning more powerful attacks on such  
problems.
[...]
It is time to recognize that the original goals of AI were not merely extremely difficult, they were goals that, although  
glamorous and motivating, ‘sent the discipline off in the wrong direction’. [... A] machine and a mind can beat a  
mind-imitating machine working by itself.
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11. Paradigma computazionale
Si riportano, infine, alcuni passi di un articolo molto citato in questi anni, specialmente in relazione alla didattica 
dell’informatica, che porpone di orientarsi verso una visione più ampia e “culturale” della disciplina. Alla luce di 
questa nuova prospettiva, sono stati proposti curricula di introduzione all’informatica concepiti sulla base di 
criteri diversi da quelli tradizionali.
Jeannette M. Wing, “Computational Thinking”, Communications of the ACM, 49(3), 2006.

Computational Thinking [...] represents a universally applicable attitude and skill set everyone, not just computer  
scientists, would be eager to learn and use.
[...]
Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple  
levels of abstraction.
[...]
Computational thinking is thinking recursively. It is parallel processing. It is interpreting code as data and data as  
code. It  is  type checking as the generalization of dimensional analysis. [...] It is judging a program not just for  
correctness and efficiency but  for aesthetics,  and a system’s design for simplicity  and elegance. [...]  It  is  using  
invariants to describe a system’s behavior succinctly and declaratively. It is having the confidence we can safely use,  
modify, and influence a large complex system without understanding its every detail. [...] Computational thinking is  
thinking in terms of prevention, protection, and recovery from worst-case scenarios through redundancy, damage  
containment, and error correction.
[...]
We have  witnessed  the influence  of  computational  thinking  on  other  disciplines.  [...  E.g.,]  Computer  science’s  
contribution to biology goes beyond the ability to search through vast amounts of sequence data looking for patterns.  
The hope is that data structures and algorithms --- our computational abstractions and methods --- can represent the  
structure of proteins in ways that elucidate their function. Computational biology is changing the way biologists  
think.
[...]
– Conceptualizing, not programming

Thinking like a computer scientist [...] requires thinking at multiple levels of abstraction […].
– Fundamental, not rote skill

A fundamental skill is something every human being must know to function in modern society […].
– A way that humans, not computers, think

Computational thinking is a way humans solve problems, it is not trying to get humans to think like computers  
[…].

– Complements and combines mathematical and engineering thinking […].
– Ideas, not artifacts […].
– For everyone, everywhere

Computational thinking will be a reality when it is so integral to human endeavors it disappears as an explicit  
philosophy […]. We especially need to reach the pre-college audience, including teachers, parents, and students,  
sending them [a main message]:

– Intellectually challenging and engaging scientific problems remain to be understood and solved  — The problem 
domain and solution domain are limited only by our own curiosity and creativity.

[...]
Professors of computer science should teach a course called “Ways to Think Like a Computer Scientist”.
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9. Riepilogo
Proviamo a riepilogare i principali punti di vista emersi dagli estratti riportati sopra:

1. G. J. Sussman
l’informatica pertiene 
all’ambito linguistico?

L’informatica, più che una scienza, è un linguaggio che ci permette di esprimere 
rigorosamente  un  nuovo  tipo  di  conoscenza  (epistemologia  procedurale)  che 
prima poteva solo essere indotta da esempi.
In realtà,  la stessa osservazione si potrebbe fare riguardo alla matematica. Di 
fatto, la conoscenza che sottende un nuovo linguaggio diventa oggetto di studio 
in se stessa (vedi la logica, ma non solo).

2. R. Bornat
l’informatica pertiene 
all’ambito matematico-
logico?

L’approccio scientifico sta nella motivazione del ricercatore, se questo mira a 
conoscere in senso idealistico (la verità), indipendentemente dall’utilità, piuttosto 
che a risolvere problemi pratici, come invece fa l’ingegnere.
A margine, l’evocazione della visione Platonica ci ricorda che solo se crediamo 
nell’esistenza  ontologica  della  realtà  studiata  dalla  matematica  o 
dall’informatica,  allora  queste  discipline  possono  essere  intese  come  scienze 
della realtà.

3. H. Eden
l’informatica pertiene 
all’ambito scientifico?

L’argomento  della  complessità degli  attuali  sistemi  software  rende  poco 
realistico fondare il processo di validazione dei programmi esclusivamente sul 
metodo analitico-deduttivo del paradigma razionalista.
Inoltre, le caratteristiche di  non-linearità e  auto-modificabilità di questi sistemi 
costituiscono ulteriori elementi a sostegno della sperimentazione scientifica.

4. G. Dodig-Crnkovic
i paradigmi del passato 
riescono a caratterizzare la  
natura dell’informatica?

I paradigmi disciplinari che hanno guidato l’inquadramento epistemologico delle 
scienze classiche non sembrano più adeguati a rappresentare l’evoluzione di tutte 
le discipline scientifiche moderne, in termini di complessità, pluridisciplinarità e 
indistricabile relazione con le tecnologie.
Emerge la ricchezza di stimoli offerti dalla disciplina.

5. T. Colburn
l’astrazione ha la stessa 
natura nell’informatica e  
nella matematica?

La  dicotomia  astratto/concreto  (algoritmo/macchina),  così  come  si  manifesta 
nell’informatica, ha implicazioni filosofiche di rilievo, riminescenti del dualismo 
mente/corpo,  che  comprendono  il  piano  ontologico  e  hanno  conseguenze  di 
interesse pratico, per esempio giuridiche.
Le capacità di astrazione sono certamente fra le più importanti nella formazione 
informatica, sia a fini professionali che di ricerca.

6. P. Wegner
Il concetto classico di  
algoritmo è ancora centrale 
per l’informatica?

I  modelli  funzionali,  caratteristici  delle  teorie  matematiche della  calcolabilità, 
non sono più sufficientemente espressivi per descrivere la maggior parte delle 
computazioni  che  hanno luogo nei  moderni  sistemi.  Ciò rende  necessario un 
cambiamento di paradigma che assuma le interazioni come entità centrali.
I nuovi modelli si prestano meno a un trattamento analitico, e implicano anche 
un  cambiamento  di  natura  epistemologica:  da  un  approccio  fondato  sul 
razionalismo (matematico) a uno basato piuttosto sull’empirismo (scientifico?).

7. N. F. Stewart
l’informatica applica il  
metodo scientifico per 
vagliare i risultati?

L’approccio scientifico sta nelle caratteristiche e nel rigore del metodo attraverso 
cui i risultati sono vagliati a beneficio della comunità dei ricercatori.
Alcuni  dei  problemi  affrontati  in  ambito  informatico  si  propongono  di 
interpretare la realtà naturale, e in questo senso possono essere affrontati con il 
metodo delle scienze empiriche.

8. J. Hromkovič
La natura dell’informatica 
ha rilievo per l’educazione 
secondaria?

L’informatica  sfugge  a  una  classificazione  secondo  le  categorie  disciplinari 
tradizionali:  comprende  aspetti  che  la  caratterizzano  come  meta-scienza,  alla 
stregua della matematica o della filosofia, come scienza della natura e, allo stesso 
tempo, come disciplina ingegneristica.
L’informatica ha un importante valore formativo perché è interdisciplinare alla 
radice e dà l’opportunità di apprendere i linguaggi di diverse aree, nonché modi 
di pensare diversi, tutto all’interno di una stessa disciplina.
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9. D.E. Knuth
La centralità dell’algoritmo 
fa dell’informatica un ramo 
della matematica?

Al cuore dell’informatica si colloca l’algoritmo, concetto che attraversa e unifica 
I diversi ambiti della disciplina e che assume un rilievo particolare anche dal 
punto di vista pedagogico.
mentre la matematica si occupa prevalentemente di relazioni, intese staticamente, 
l’informatica affronta gli aspetti dinamici dei processi.

10. F.P. Brooks, Jr.
Le ragioni dell’informatica 
sono in ultima istanza le  
ragioni degli utilizzatori?

L’informatica non è una scienza, bensì una disciplina sintetica, ingegneristica, il 
cui  successo  dipende  dalla  soddisfazione  degli  utilizzatori  degli  strumenti 
sviluppati.
L’approccio  ai  problemi  dell’informatica  è  caratterizzato  da  complessità  ed 
arbitrarietà (che lascia spazio alla creatività), distinguendosi decisamente sia da 
quello  matematico,  che  tende  ad  evitare  astrazioni  complesse,  sia  da  quello 
scientifico, che si aspetta che le leggi della natura non siano arbitrarie.

11. J.M. Wing
Quali sono i modi di  
pensare di un informatico?

Pensare come un informatico significa essere in grado di destreggiarsi fra una 
molteplicità di livelli di astrazione.
È opportuno  de-enfatizzare  gli  aspetti  più  tecnici,  come  la  pratica  della 
programmazione, al fine di riuscire ad apprezzare il peculiare contributo che la 
disciplina può offrire per affrontare problemi intelletualmente stimolanti, anche 
in connessione con altri ambiti della conoscenza.

Come si può osservare, la risposta a domande apparentemente contradittorie può essere data in senso positivo o 
negativo,  a  seconda  di  quali  aspetti  si  sta  privilegiando.  L’informatica  può essere  l’insieme di  tutte  queste 
risposte “positive”, oppure può essere qualcosa di diverso da ciò a cui eravamo abituati, ma per ora la prospettiva 
dipende dalle inclinazioni del soggetto che vi riflette e non ci si può aspettare una definizione condivisa da tutti i 
membri della comunità che praticano l’informatica.

10. Ulteriori riferimenti
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L. Floridi (Ed.), “The Blackwell Guide to the Philosophy of Computing and Information”, Blackwell, 2003.
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