

Analisi Teorica: Schemi di Ordinamento

Claudio Mirolo

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università di Udine

Laboratorio PLS

Sommario

- Problema
 - in generale
- 2 Informazioni
 - analisi
 - cogliere il significato
- 3 Algoritmi
 - insertion sort
 - quick sort
- 4 Epilogo

Trama

- Problema
 - in generale
- Informazioni
 - analisi
 - cogliere il significato
- Algoritm
 - insertion sort
 - quick sort
- 4 Epilogo

Ordinamento in generale

- Ordinare *n* oggetti per *chiave* crescente
- unicamente sulla base del confronto (delle chiavi) di coppie di oggetti

Ordinamento in generale

- Ordinare *n* oggetti per *chiave* crescente
- unicamente sulla base del confronto (delle chiavi) di coppie di oggetti

Ordinamento in generale

- Ordinare *n* oggetti per *chiave* crescente
- unicamente sulla base del confronto (delle chiavi) di coppie di oggetti

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

- Quale strategia?
- Quanti confronti sono necessari nel peggiore dei casi?
- Ci sono strategie migliori da questo punto di vista?
- Si potrebbe fare ancora meglio?
- C'è un limite ineludibile?

Trama

- Problema
 - in generale
- 2 Informazioni
 - analisi
 - cogliere il significato
- Algoritmi
 - insertion sort
 - quick sort
- 4 Epilogo

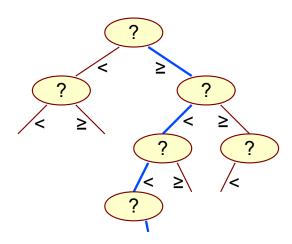
• In quanti modi diversi si possono mescolare n oggetti?

- In quanti modi diversi si possono mescolare n oggetti?
- Quanti sono i potenziali "percorsi" di ordinamento diversi?

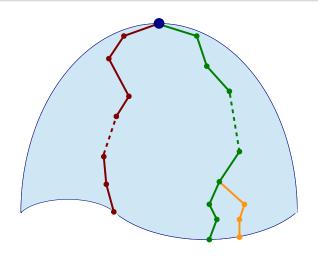
- In quanti modi diversi si possono mescolare n oggetti?
- Quanti sono i potenziali "percorsi" di ordinamento diversi?
- Che informazione rivela un singolo confronto?

- In quanti modi diversi si possono mescolare n oggetti?
- Quanti sono i potenziali "percorsi" di ordinamento diversi?
- Che informazione rivela un singolo confronto?
- Che relazione fra informazione e numero di casi possibili?

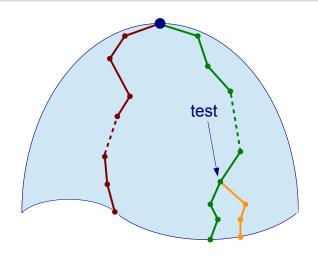
- In quanti modi diversi si possono mescolare n oggetti?
- Quanti sono i potenziali "percorsi" di ordinamento diversi?
- Che informazione rivela un singolo confronto?
- Che relazione fra informazione e numero di casi possibili?
- Nel peggiore dei casi, qual è il numero minimo di confronti?



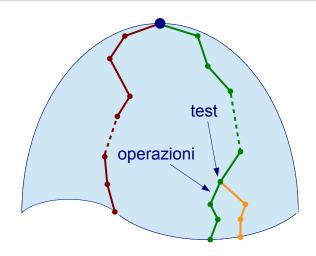
Confronti e operazioni



Confronti e operazioni



Confronti e operazioni



- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni bilanciate occorrono almeno k confronti, dove: 2^k ≥ n!
- Ovvero: $k \approx \log_2(n!)$

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni bilanciate occorrono almeno k confronti, dove: 2^k ≥ n!
- Ovvero: $k \approx \log_2(n!)$

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni bilanciate occorrono almeno k confronti, dove: 2^k ≥ n!
- Ovvero: $k \approx \log_2(n!)$

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni bilanciate occorrono almeno k confronti, dove: 2^k > n!
- Ovvero: $k \approx \log_2(n!)$

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni *bilanciate* occorrono almeno *k* confronti, dove: $2^k \ge n! > 2^{k-1}$
- Ovvero: $k \approx \log_2(n!)$

- $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ casi possibili
- Ogni confronto determina una bipartizione di casi
- Per bipartizioni *bilanciate* occorrono almeno *k* confronti, dove: $2^k \ge n! > 2^{k-1}$
- Ovvero: $k \approx \log_2(n!)$

x! cresce molto rapidamente, ma...

log(x) cresce molto lentamente

$$\bullet \quad n \cdot (n-1) \cdot \ldots \cdot 1$$

$$n \cdot (n-1) \cdot \ldots \cdot 1$$

$$\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \quad < \quad n \cdot (n-1) \cdot \ldots \cdot 1 \quad < \quad n \cdot n \cdot \ldots \cdot n$$

• Cioè:
$$(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$$

$$n \cdot (n-1) \cdot \ldots \cdot 1$$

$$n \cdot (n-1) \cdot \ldots \cdot 1$$

$$\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \quad < \quad n \cdot (n-1) \cdot \ldots \cdot 1 \quad < \quad n \cdot n \cdot \ldots \cdot n$$

• Cioè:
$$(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$$

- $n \cdot (n-1) \cdot \ldots \cdot 1$
- \bullet $n \cdot (n-1) \cdot \ldots \cdot 1$
- $\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \quad < \quad n \cdot (n-1) \cdot \ldots \cdot 1 \quad < \quad n \cdot n \cdot \ldots \cdot n$
- Cioè: $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$

- $n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$ (*n* volte)
- $n \cdot (n-1) \cdot \ldots \cdot 1$
- $\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} < n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$
- Cioè: $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$

•
$$n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$$
 (*n* volte)

•
$$n \cdot (n-1) \cdot \ldots \cdot 1$$

$$\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} < n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$$

• Cioè:
$$(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$$

- $n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$ (*n* volte)
- $n \cdot (n-1) \cdot \ldots \cdot 1 > n \cdot (n-1) \cdot \ldots \cdot \frac{n}{2}$
- $\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} < n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$
- Cioè: $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$

•
$$n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$$
 (*n* volte)

•
$$n \cdot (n-1) \cdot \ldots \cdot 1 > \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \quad (\frac{n}{2} \text{ volte})$$

$$\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \quad < \quad n \cdot (n-1) \cdot \ldots \cdot 1 \quad < \quad n \cdot n \cdot \ldots \cdot n$$

• Cioè:
$$(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$$

•
$$n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$$
 (*n* volte)

•
$$n \cdot (n-1) \cdot \ldots \cdot 1 > \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2}$$
 $(\frac{n}{2} \text{ volte})$

$$\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} < n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$$

• Cioè:
$$(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$$

x! cresce molto rapidamente, ma... log(x) cresce molto lentamente

- $n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$ (*n* volte)
- $n \cdot (n-1) \cdot \ldots \cdot 1 > \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2}$ $(\frac{n}{2} \text{ volte})$
- $\bullet \quad \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} < n \cdot (n-1) \cdot \ldots \cdot 1 < n \cdot n \cdot \ldots \cdot n$
- Cioè: $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$

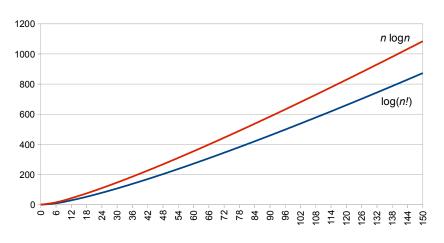
- $\bullet \quad \log(\frac{n}{2})^{\frac{n}{2}} < \log(n!) < \log(n^n)$
- $\bullet \quad \frac{n}{2}\log(\frac{n}{2}) < \log(n!) < n\log(n)$
- $k \approx \log(n!) \approx \gamma \cdot n \log(n)$

- $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$
- $\bullet \quad \log(\frac{n}{2})^{\frac{n}{2}} < \log(n!) < \log(n^n)$
- $\bullet \quad \frac{n}{2}\log(\frac{n}{2}) < \log(n!) < n\log(n)$
- $k \approx \log(n!) \approx \gamma \cdot n \log(n)$

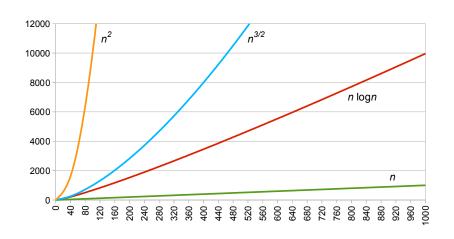
- $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$
- $\bullet \quad \log(\frac{n}{2})^{\frac{n}{2}} < \log(n!) < \log(n^n)$
- $\bullet \quad \frac{n}{2}\log(\frac{n}{2}) < \log(n!) < n\log(n)$
- $k \approx \log(n!) \approx \gamma \cdot n \log(n)$

- $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$
- $\bullet \quad \log(\frac{n}{2})^{\frac{n}{2}} < \log(n!) < \log(n^n)$
- $\bullet \quad \frac{n}{2}\log(\frac{n}{2}) < \log(n!) < n\log(n)$
- $k \approx \log(n!) \approx \gamma \cdot n \log(n)$

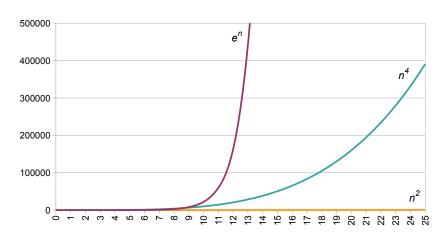
- $(\frac{n}{2})^{\frac{n}{2}} < n! < n^n$
- $\bullet \quad \log(\frac{n}{2})^{\frac{n}{2}} < \log(n!) < \log(n^n)$
- $\bullet \quad \frac{n}{2}\log(\frac{n}{2}) < \log(n!) < n\log(n)$
- $k \approx \log(n!) \approx \gamma \cdot n \log(n)$



Cogliere il significato



L'impresa impossibile della formichina...



Trama

- Problema
 - in generale
- 2 Informazioni
 - analisi
 - cogliere il significato
- 3 Algoritmi
 - insertion sort
 - quick sort
- 4 Epilogo



Algoritmi...

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti [...].

D.E. Knuth, 1974

Algoritmi...

Forse la scoperta più significativa determinata dall'avvento del computer sarà che gli algoritmi, come oggetti di studio, sono straordinariamente ricchi di proprietà interessanti [...].

D.E. Knuth, 1974

Algoritmi

 Numero di confronti che non cresca più rapidamente di n log(n)...

• Questo obiettivo è perseguibile?

• Esistono, cioè, strategie con trend ottimale?

Algoritmi

 Numero di confronti che non cresca più rapidamente di n log(n)...

Questo obiettivo è perseguibile?

Esistono, cioè, strategie con trend ottimale?

Algoritmi

 Numero di confronti che non cresca più rapidamente di n log(n)...

Questo obiettivo è perseguibile?

Esistono, cioè, strategie con trend ottimale?

Insertion Sort

Insertion Sort

Programma

```
public void insertionSort( int[] seq ) {
int n = seq.length;
for ( int i=1; i < n; i=i+1 ) {
  int x = seq[i], j = i - 1;
  while ((i >= 0) \&\& (seq[i] > x)) {
    seq[j+1] = seq[j]; j = j - 1;
  seq[j+1] = x;
```


Visualizzazione

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (× 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

- Quanto ci si può aspettare aumenti il tempo di calcolo
 se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

InsertionSort: Stima del numero di confronti

Caso peggiore:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore (già ordinato), estremamente improbabile:

$$\approx \beta \cdot n$$

$$\frac{1}{2} \cdot \frac{n(n-1)}{2}$$
 (circa) $\approx \gamma \cdot n^2$

InsertionSort: Stima del numero di confronti

Caso peggiore:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore (già ordinato), estremamente improbabile:

$$\approx \beta \cdot n$$

$$\frac{1}{2} \cdot \frac{n(n-1)}{2}$$
 (circa) $\approx \gamma \cdot n^2$

InsertionSort: Stima del numero di confronti

Caso peggiore:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2} \approx \alpha \cdot n^2$$

Caso migliore (già ordinato), estremamente improbabile:

$$\approx \beta \cdot \mathbf{n}$$

$$\frac{1}{2} \cdot \frac{n(n-1)}{2}$$
 (circa) $\approx \gamma \cdot n^2$

InsertionSort: Stima del numero di confronti

Caso peggiore:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore (già ordinato), estremamente improbabile:

$$\approx \beta \cdot \mathbf{n}$$

$$\frac{1}{2} \cdot \frac{n(n-1)}{2}$$
 (circa) $\approx \gamma \cdot n^2$

Programma

```
private void quickSort( int 1, int u, int[] seq ) {
if (l < u) {
  int m = seq[1], i = 1, j = u;
  do {
   while (seq[i] < m) \{ i = i + 1; \}
   while (seq[j] > m) \{ j = j - 1; \}
    if ( i < j ) {
      int x = seq[i]; seq[i] = seq[j]; seq[j] = x;
      i = i + 1; j = j - 1;
  } while ( i < j );</pre>
  if (seq[j] > m) \{ j = j - 1; \}
  quickSort( l, j, seq );
  quickSort( j+1, u, seq );
```


Visualizzazione

• È un algoritmo con trend ottimale?

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

• È un algoritmo con trend ottimale?

Quanto ci si può aspettare aumenti il tempo di calcolo
 se la lunghezza della sequenza raddoppia (x 2)?
 e se viene decuplicata (x 10)?

40 40 40 40 40 0

Visualizzazione

È un algoritmo con trend ottimale?

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

È un algoritmo con trend ottimale?

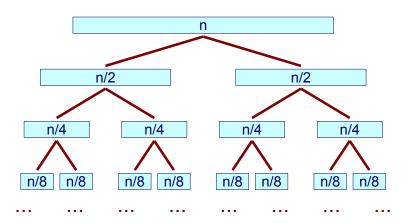
- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Visualizzazione

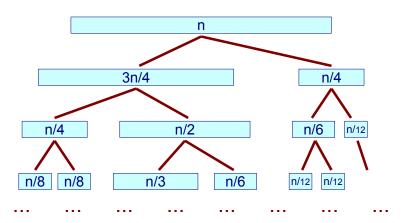
È un algoritmo con trend ottimale?

- Quanto ci si può aspettare aumenti il tempo di calcolo
 - se la lunghezza della sequenza raddoppia (x 2)?
 - e se viene decuplicata (× 10)?

Bipartizioni perfettamente bilanciate



Bipartizioni più o meno bilanciate



QuickSort: Sitma del numero di confronti

• Caso peggiore, estremamente improbabile:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore, bipartizioni perfettamente bilanciate:

$$\log n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \beta \cdot n \log n$

• Caso medio, bipartizioni in proporzione $\frac{1}{\rho}$ e $1 - \frac{1}{\rho}$ (ripartizione "media", dove $1 < \rho < 2$):

$$\log_{o} n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \gamma \cdot n \log n$

QuickSort: Sitma del numero di confronti

• Caso peggiore, estremamente improbabile:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2} \approx \alpha \cdot n^2$$

- Caso migliore, bipartizioni perfettamente bilanciate: $\log n$ (livelli) · n (confronti/livello) $\approx \beta \cdot n \log n$
- Caso medio, bipartizioni in proporzione $\frac{1}{\rho}$ e $1 \frac{1}{\rho}$ (ripartizione "media", dove $1 < \rho < 2$):

$$\log_{\rho} n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \gamma \cdot n \log n$

QuickSort: Sitma del numero di confronti

• Caso peggiore, estremamente improbabile:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore, bipartizioni perfettamente bilanciate:

$$\log n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \beta \cdot n \log n$

• Caso medio, bipartizioni in proporzione $\frac{1}{\rho}$ e $1 - \frac{1}{\rho}$ (ripartizione "media", dove $1 < \rho < 2$):

$$\log_o n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \gamma \cdot n \log n$

QuickSort: Sitma del numero di confronti

• Caso peggiore, estremamente improbabile:

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}\approx \alpha\cdot n^2$$

Caso migliore, bipartizioni perfettamente bilanciate:

$$\log n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \beta \cdot n \log n$

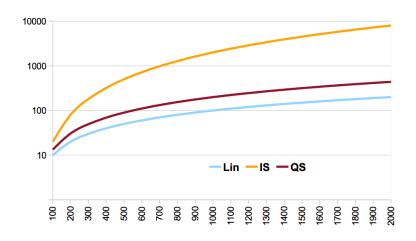
• Caso medio, bipartizioni in proporzione $\frac{1}{\rho}$ e $1 - \frac{1}{\rho}$ (ripartizione "media", dove $1 < \rho < 2$):

$$\log_a n$$
 (livelli) $\cdot n$ (confronti/livello) $\approx \gamma \cdot n \log n$

Trama

- Problema
 - in generale
- 2 Informazioni
 - analisi
 - cogliere il significato
- Algoritmi
 - insertion sort
 - quick sort
- 4 Epilogo

Confronto dei trend



Altri algoritmi

Visualizzazione

• Quali algoritmi hanno trend dei costi ottimale?

Altri algoritmi

Visualizzazione

• Quali algoritmi hanno trend dei costi ottimale?

Domandina...

Che tipo di "informatica" abbiamo affrontato oggi?

Risposta:

Domandina...

Che tipo di "informatica" abbiamo affrontato oggi?

Risposta:

Analisi teorica con strumenti caratteristici della matematica

Nuove domande... da affrontare in laboratorio

- Come si può misurare sperimentalmente tempi di calcolo?
 I risultati sono sempre attendibili?
- I tempi rilevati sperimentalmente confermano la teoria?
 In che senso la confermano?
- Quick Sort è sistematicamente migliore di Insertion Sort ? si osserva qualcosa di nuovo rispetto all'analisi teorica?

Nuove domande... da affrontare in laboratorio

- Come si può misurare sperimentalmente tempi di calcolo?
 I risultati sono sempre attendibili?
- I tempi rilevati sperimentalmente confermano la teoria?
 In che senso la confermano?
- Quick Sort è sistematicamente migliore di Insertion Sort ? si osserva qualcosa di nuovo rispetto all'analisi teorica?

Nuove domande... da affrontare in laboratorio

- Come si può misurare sperimentalmente tempi di calcolo?
 I risultati sono sempre attendibili?
- I tempi rilevati sperimentalmente confermano la teoria?
 In che senso la confermano?
- Quick Sort è sistematicamente migliore di Insertion Sort?
 si osserva qualcosa di nuovo rispetto all'analisi teorica?

Apprendista scienziato

Messa a punto di un adeguato "strumento di misura"

- Ordine di grandezza e unità di misura dei tempi di calcolo
- Risoluzione, ripetibilità, interferenza di fattori estranei
- Misura dei tempi medi di ordinamento, generazione dei campioni, criteri
- Compensazione di errori sistematici della misurazione

