
Leggere, scrivere e ... comprimere

Alberto Policriti

Università di Udine

1

Quali tecniche per comprimere un testo?

Leggere, scrivere e comprimere: algoritmi e dizionari

Cosa resta da fare?

Serve proprio decomprimere?

2

Quali tecniche per comprimere

un testo?

Entropia e Huffman

Codificare
codificare v. tr. [dal fr. codifier, der. di code ≪codice≫] (io cod̀ıfico, tu

cod̀ıfichi, ecc.).

1. Ridurre in codice, dare cioè un ordine sistematico a un complesso di

norme giuridiche relative a una determinata materia

2. Esprimere informazioni e messaggi mediante le regole e i simboli di un

sistema convenzionale (il codice) stabilito concordemente dall’emettitore

e dal ricevitore dei messaggi allo scopo di trasmettere o elaborare

automaticamente le informazioni o, talora, di mantenerle segrete: c. un

ordine, un messaggio, un’istruzione. Riferito a calcolatori elettronici,

convertire istruzioni del programma e dati nel codice di macchina.

3. In biologia, inserire gli aminoacidi portati dall’RNA di trasferimento, per

corrispondenza tra la tripletta di questo e le triplette dell’RNA

messaggero, durante la sintesi proteica.

3

Entropia e Huffman

Codificare
codificare v. tr. [dal fr. codifier, der. di code ≪codice≫] (io cod̀ıfico, tu

cod̀ıfichi, ecc.).

1. Ridurre in codice, dare cioè un ordine sistematico a un complesso di

norme giuridiche relative a una determinata materia

2. Esprimere informazioni e messaggi mediante le regole e i simboli di un

sistema convenzionale (il codice) stabilito concordemente dall’emettitore

e dal ricevitore dei messaggi allo scopo di trasmettere o elaborare

automaticamente le informazioni o, talora, di mantenerle segrete: c. un

ordine, un messaggio, un’istruzione. Riferito a calcolatori elettronici,

convertire istruzioni del programma e dati nel codice di macchina.

3. In biologia, inserire gli aminoacidi portati dall’RNA di trasferimento, per

corrispondenza tra la tripletta di questo e le triplette dell’RNA

messaggero, durante la sintesi proteica.

3

Entropia e Huffman

Codificare
codificare v. tr. [dal fr. codifier, der. di code ≪codice≫] (io cod̀ıfico, tu

cod̀ıfichi, ecc.).

1. Ridurre in codice, dare cioè un ordine sistematico a un complesso di

norme giuridiche relative a una determinata materia

2. Esprimere informazioni e messaggi mediante le regole e i simboli di un

sistema convenzionale (il codice) stabilito concordemente dall’emettitore

e dal ricevitore dei messaggi allo scopo di trasmettere o elaborare

automaticamente le informazioni o, talora, di mantenerle segrete: c. un

ordine, un messaggio, un’istruzione. Riferito a calcolatori elettronici,

convertire istruzioni del programma e dati nel codice di macchina.

3. In biologia, inserire gli aminoacidi portati dall’RNA di trasferimento, per

corrispondenza tra la tripletta di questo e le triplette dell’RNA

messaggero, durante la sintesi proteica.

3

Codifichiamo una stringa (di DNA)

A C T T T A C C T T G T

Table 1: codice ASCII

A 00
T 01
C 10
G 11

4

Codifichiamo una stringa (di DNA)

A C T T T A C C T T G T

Table 1: codice ASCII

A 00
T 01
C 10
G 11

Table 2: codice di Huffman

A 001
T 1
C 01
G 000

4

Codifichiamo una stringa (di DNA)

A C T T T A C C T T G T

Table 1: codice ASCII

A 00
T 01
C 10
G 11

Table 2: codice di Huffman

A 001
T 1
C 01
G 000

24 bits vs. 21 bits

4

Domande:

1. in quali casi funziona?

2. in quali casi non funziona?

3. funziona nel caso del genoma umano?

4. ci sono alternative? ci possiamo inventare qualcos’altro?

5

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

6

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

6

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

6

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

↑ frequenza ⇔ ↓ sorpresa ⇔ ↓ informazione ⇔ ↑ probabilità

6

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

↑ frequenza ⇔ ↓ sorpresa ⇔ ↓ informazione ⇔ ↑ probabilità

6

Entropia di una stringa di caratteri

• Quanto è probabile che il carattere sia (ad esempio) una A?

• Quanto è frequente il carattere A?

• Quanti bit mi servono per il carattere A?

↑ frequenza ⇔ ↓ sorpresa ⇔ ↓ informazione ⇔ ↑ probabilità

6

Let’s get real

Probabilità ed entropia di una random variable distribution

7

Let’s get real

Probabilità ed entropia di una random variable distribution

Definition

Sia p(x) probabilità che la r.v. X sia x ∈ {a, c,g , t}.

7

Let’s get real

Probabilità ed entropia di una random variable distribution

Definition

Sia p(x) probabilità che la r.v. X sia x ∈ {a, c,g , t}.

H(X) = ∑

x∈{a,c,g,t}
p(x) log(1/p(x))

= E[log(1/p(x)] ... BITs (SHANNONs)

7

Let’s get real

Probabilità ed entropia di una random variable distribution

Definition

Sia p(x) probabilità che la r.v. X sia x ∈ {a, c,g , t}.

H(X) = ∑

x∈{a,c,g,t}
p(x) log(1/p(x))

= E[log(1/p(x)] ... BITs (SHANNONs)

Non possiamo codificare una stringa S con meno di

H(S) = − ∑

x∈{a,c,g,t}
P(x) ⋅ log2(P(x))

bits/simbolo.

7

Torniamo alle nostre domande:

1. in quali casi funziona?

2. in quali casi non funziona?

3. funziona nel caso del genoma umano?

4. ci sono alternative? ci possiamo inventare qualcos’altro?

8

Comprimere due genomi

Per un solo genoma: compressori basati su entropia

codifica (ottimale)

9

Comprimere due genomi

Per un solo genoma: compressori basati su entropia

codifica (ottimale)

Per due (o più) genomi?

9

Comprimere due genomi

Per un solo genoma: compressori basati su entropia

codifica (ottimale)

Per due (o più) genomi?

Le frequenze non cambiano!

9

Idea!

10

Idea!

Alternativa

non rifare quello che hai già fatto

10

Idea!

testo

10

Idea!

testo già compresso

10

Idea!

testo già compresso α

10

Idea!

testo già compresso α

10

Idea!

testo già compresso α

tutto ciò che mi serve è sapere: dove e quanto è lunga α

10

Idea!

testo già compresso α

tutto ciò che mi serve è sapere: dove e quanto è lunga α

due numeri interi

10

Idea!

testo già compresso α

tutto ciò che mi serve è sapere: dove e quanto è lunga α

due numeri interi

... codifica?

10

Leggere, scrivere e

comprimere: algoritmi e

dizionari

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

Indico con Li la posizione di una occorrenza di T i alla sua sinistra,

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

Indico con Li la posizione di una occorrenza di T i alla sua sinistra,

comprimo T sostituendola con

(∣T 1
∣,L1)(∣T

2
∣,L2)⋯(∣T p

∣,Lp)

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

Indico con Li la posizione di una occorrenza di T i alla sua sinistra,

comprimo T sostituendola con

(∣T 1
∣,L1)(∣T

2
∣,L2)⋯(∣T p

∣,Lp)

... leggere, scrivere e comprimere.

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

Indico con Li la posizione di una occorrenza di T i alla sua sinistra,

comprimo T sostituendola con

(∣T 1
∣,L1)(∣T

2
∣,L2)⋯(∣T p

∣,Lp)

Provate con la stringa usata per Huffman. Pensate al caso di due (o più)

genomi da comprimere.

11

Lempel-Ziv parsing

T = t1t2⋯tn

vogliamo ottenere il parsing di T :

T = T 1T 2
⋯T p

in p frasi.

Indico con Li la posizione di una occorrenza di T i alla sua sinistra,

comprimo T sostituendola con

(∣T 1
∣,L1)(∣T

2
∣,L2)⋯(∣T p

∣,Lp)

https://www.ncbi.nlm.nih.gov

11

Cosa resta da fare?

Problemi da risolvere

• come trovo le occorrenze di α?

• quanto tempo ci metto?

• quanto spazio occupo?

• da dove mi conviene partire?

• ...

12

Problemi da risolvere

• come trovo le occorrenze di α?

• quanto tempo ci metto?

• quanto spazio occupo?

• da dove mi conviene partire?

• ...

12

Problemi da risolvere

• come trovo le occorrenze di α?

• quanto tempo ci metto?

• quanto spazio occupo?

• da dove mi conviene partire?

• ...

12

Problemi da risolvere

• come trovo le occorrenze di α?

• quanto tempo ci metto?

• quanto spazio occupo?

• da dove mi conviene partire?

• ...

12

Problemi da risolvere

• come trovo le occorrenze di α?

• quanto tempo ci metto?

• quanto spazio occupo?

• da dove mi conviene partire?

• ...

12

Lempel-Ziv-Welch

È possibile combinare LZ e codifica?

Codifichiamo frasi.

13

Lempel-Ziv-Welch

Lempel-Ziv-Welch (LZW) is a lossless data compression algorithm that was first published by Terry
Welch in 1984 as a modification of the LZ77 and LZ78 compression algorithms developed by Jacob
Ziv and Abraham Lempel (Duke). It is a dictionary based compression algorithm that is relatively
simple for developers to implement and is widely used in GIF file formats (SFU).

Nagivate

Exigence
How it Works
US Patent Law & LZW
LZW, GIF, & PNG
Today

Prior to the development of LZW, the most common form of compression was Huffman Coding.
Huffman coding works by assigning probabilities to which letter will appear next in a given text (MIT).
This has complications, as each text will have a different probability for certain letters. For example:
“x” is one of the least common letters in standard texts, but would appear frequently in a math text.
Another complication of Huffman’s method is the inherent dependence on both the English language
and the probability of similar words occurring in different documents. In response to these
shortcomings, Lempel and Ziv developed a dictionary-based, adaptive compression method. Welch
later improved upon this method (Duke).

LZW is a dictionary-based compression method that takes advantage of repetitive patterns (MIT).
Dictionary-based compression algorithms encode the data through referencing a dictionary. LZW is
based on a standard character set dictionary of 256 characters. The data will be scanned and each
time the algorithm encounters a substring of characters (ie: “th”, “tr”, “the”…) that substring will be
added to the dictionary and encoded with a single number. To decompress the data, LZW does not
require the dictionary assignments that were featured in the compression (Duke). This is because both
the encoding and the decoding programs utilize the same 256 characters. To decompress, LZW reads
an assigned character and “looks up” the character in the dictionary to see what substring it was
applied to. This process is repeated until the information is decoded (MIT).

The initial patents for LZW were held by the Sperry Corporation, which later became Unisys
Corporation. The first patent in the LZ family was filed in 1981. US patent 4,558,302 was issued to
Terry Welch and Sperry Corporation on June 20,1983 (US 4558302 A).

The LZW method has been referenced in over one hundred additional patents, including ones as
recent as 2013. Companies developing patented technologies that employ LZW include Unisys,
Hewlett Packard, Apple, Google, Nielsen, Cisco, & Microsoft (US 4558302 A).

Many of the patents feature variations on the common theme of lossless data compression; however,
in 2007 Apple filed US patent 8751022 B2, “Multi-take compositing of digital media assets”, in 2014
Hola Networks filed US patent 20150067918 A1, “System and method of improving internet
communication by using intermediate nodes, and in 2009 Nielsen filed patent US 8503991 B2,
“Methods and apparatus to monitor mobile devices”. While these patents employ the LZW method
and in its traditional, compression-based purpose, they move beyond simple compression and
directly apply it to three modern purposes technology is being used for. While the transmission of
media files and more efficient internet connectivity are hardly controversial topics, the employment of
the LZW method to better monitor mobile devices brings about questions of ethicality concerning
fourth amendment rights. This places the LZW compression algorithm directly in the context of one of
the hottest debates over the past five years.

To better understand additional patent-related controversies involving the LZW algorithm, it is
important to have a solid understanding of patents. Patents are issued by a government and give the
holder the sole right to exclude others from making, using, or selling an invention (USPTO). In most
cases of patent law, the term of a patent is a maximum of twenty years, but commonly can also be six
or ten years. Patents expire to encourage innovation and competition in the market. Imagine if drug
patents never expired! Major pharmaceutical companies could potentially charge thousands of dollars
for medications and would be able to rely on that income forever. The selling price would be well
above the market price and innovation in the pharmaceutical field would be stagnant. Take a moment
and apply this scenario to the technology industry.

Starting in 1993, Unisys began attempting to collect licensing fees for the use of the LZW
compression algorithm. Only ten years into the twenty-year patent granted to Terry Welch and Unisys
(which acquired Sperry Corporation) by the United States government, Unisys was perfectly within its
legal right to being collecting licensing fees. However, the Graphics Interchange Format (GIF), the
most popular image format of the moment used LZW compression to reduce the file size (Cloanto).

It was not the fact that Unisys began collecting royalties on the use of the LZW algorithm that angered
the masses, but rather the fact that they began collecting royalties ten years after its invention when
specification and standards that employed LZW had already been set in place. To be fair to Unisys,
the explosion of LZW’s use to compress different technologies was unanticipated and to maintain
tabs on every technology using LZW would have taking mammoth amounts of time and manpower. It
is possible that in 1993, Unisys was just finding time to come up for air and begin monetizing its
product.

Regardless of what led to the timing of the decision to collect licensing fees, the tech community was
outraged and a group of leaders from the graphics community got together to form the Usenet
comp.graphics discussion on replacing the GIF file format (Cloanto). These talks culminated in the
creatinog of the Portable Network Graphic (PNG) file in 1995. Undeterred by patents, the PNG file was
expected to replace the GIF.

Ultimately, a Usenet comp.graphics discussion, Thoughts on a GIF-replacement file format,
culminuated int he creation of the Portable Network Grpahics (PNG) file in 1995. Undeterred by
patents, the PNG file was expected to replace the GIF.

PNG files were comparable to GIF and TIFF files in that they employed a lossless data compression
method that allowed data to be decompressed and restructured bit by bit into an exact replica of the
original image (libpng).Because LZW uses a table structure to compress/ decompress image files,
only horizontal redundancies could be removed. PNG files are compressed using a variation on LZW
—LZ77. LZ77 alows for the files to be compressed both vertically and horizontally, so PNG files are
much smaller than GIF files (Dev The Web).

While I argue that PNG files did not replace GIF files because they are not animated and therefore
serve a different purpose in the current moment, they have grown in popularity over the past twenty
years and were used on 62.4% of all websites as of 2013, opposed to GIF’s 62.3% W3 Techs). This
.1% may seem very trivial, but in 2012, GIF was ahead of PNG by over 15% (W3 Techs). *see graphic
at left

On June 20, 2003, twenty years after it was filed, Unisys's US patent for the LZW compression
algorithm expired. Over the next year, patents filed in Canada, Japan, Germany, Italy, France, and the
United Kingdom also expired. The GIF was (completely) free at last (US patent 4558302 A).

The past ten years have witnessed a resurgence of the GIF file in popular culture. As mentioned
previously, GIF files were present on 62.4% of all websites in 2013, nine years after the expiration of
the LZW patent (W3 Tech). The boom in GIF popularity was inspired by nostalgia, an increase in social
media, and the rise of snackable content. Snackable content is easily consumable content that aims
for ease in readability. Popular examples of snackable content include sites such as Buzzfeed, which
specialize in GIF-centric “listicles”.

LZW is also found in numerous patents filed in the last ten years. As mentioned previously, Nielsen
filed several patents referencing LZW in conjunction with the monitoring of mobile devices while Apple
referenced in terms of the transmission of media files. These not only place LZW directly in a modern
context, but also speak to the way that LZW enables scalability of technology.

We can view the history of the LZW compression algorithm and the various soft technologies that it
impacted through the lens of Christina Haas’ Social Dynamics, or Scientific Truth, or Sheer Human
Cussedness: Design Decision in the Evolution of User Interface.

In this chapter, Hass argues that evolution in technology is not “inevitable or self-determining” but that
they are driven by human factors—such as stubbornness (137). This stubbornness inspiring
innovation and evolution of technology is seen directly in the PNG file format. While the PNG file offers
a lossless image format that is preferred by many graphic designers today, it was invented not to fill
that purpose, but to replace the GIF after an argument arose in the tech community. While we cannot
discount the fact that the PNG file plays a different role than the GIF file, we need to note that we able
to rather clearly view the evolution of PNG through Haas’ framework of cussedness.

The history of the LZW algorithm’s usage can also be viewed through the Vygotskian framework. The
main argument of Vygotsky’s framework is that social interaction has a crucial role in the development
of cognition. The manner in which LZW is used has evolved drastically over time and these changes
can be attributed to a variety of forms of social interaction—be they the desire to send easy to
interpret animated files, monitor the communications and social interactions of others, or more
effectively transmit media to peers. These social interactions have also inspired the conflicts (or
cussedness) that have inspired alternatives to using the LZW method.

"Chapter 9. Compression and Filtering." Compression and Filtering (PNG: The Definitive Guide). N.p., n.d. Web. 27 Oct. 2015.

"Compression Methods: GIF vs. JPEG vs. PNG." Compression Methods: GIF vs. JPEG vs. PNG. N.p., n.d. Web. 27 Oct. 2015.

"Data Compression Tutorial: Part 2." LZW Compression. N.p., n.d. Web. 27 Oct. 2015.

"General Information Concerning Patents." General Information Concerning Patents. N.p., n.d. Web. 26 Oct. 2015.

"The GIF Controversy: A Software Developer's Perspective." Cloanto. Cloanto, n.d. Web. 27 Oct. 2015.

"GIF Specification." W3.org. Compuserve, 1987. Web. 27 Oct. 2015.

Haas, Christina. (1996). Chapter 6 from Writing technology.

"Head-mount Display with Exercise Information Displayed Thereon." Google Patents. N.p., n.d. Web. 27 Oct. 2015.

"Huffman Coding." Huffman Coding. N.p., n.d. Web. 27 Oct. 2015.

"Lempel-Ziv-Welch (LZW) Algorithm." Lempel-Ziv-Welch (LZW) Algorithm. N.p., n.d. Web. 27 Oct. 2015.

"LZW Compression." Interactive LZW. N.p., n.d. Web. 27 Oct. 2015.

"Optimizing Web Graphics: Compression." Dev the Web. Web. 10 Dec. 2015.

"Patent US20150067819 - System and Method for Improving Internet Communication by Using Intermediate Nodes." Google Patents. N.p., n.d. Web. 27 Oct.
2015.

"Patent US4464650 - Apparatus and Method for Compressing Data Signals and Restoring the Compressed Data Signals." Google Patents. N.p., n.d. Web. 27 Oct.
2015.

"Patent US4558302 - High Speed Data Compression and Decompression Apparatus and Method." Google Patents. N.p., n.d. Web. 27 Oct. 2015.

"Patent US8503991 - Methods and Apparatus to Monitor Mobile Devices." Google Patents. N.p., n.d. Web. 27 Oct. 2015.

"Patent US8751022 - Multi-take Compositing of Digital Media Assets." Google Patents. N.p., n.d. Web. 27 Oct. 2015.

"The PNG Image File Format Is Now More Popular than GIF." The PNG Image File Format Is Now More Popular than GIF. W3 Techs, n.d. Web. 27 Oct. 2015.

6.02, Mit. Compression Algorithms: Huffman (n.d.): n. pag. MIT Draft Lecture Notes. Hari, 13 Feb. 2012. Web.

"Text Compression in LZW and Flate." Slide Share. LinkedIn, n.d. Web. 27 Oct. 2015.

Welch. "A Technique for High-Performance Data Compression." Computer 17.6 (1984): 8-19. Duke University. Web.

HISTORICIZING LZW COMPRESSION ALGORITHMS

Overview

.

Exigence

How it Works

US Patent Law & LZW

LZW,GIF &, PNG

Today

Theoretical Framework

Works Cited

13

Lempel-Ziv-Welch

CAN YOU PATENT AN ALGORITHM?

Have you developed a new software code and are wondering if you can patent an algorithm? This is a
common question with developers, as they often want to know if their algorithm can be protected under
intellectual property law.

CAN YOU PATENT AN ALGORITHM?
Unfortunately, Algorithms on their own cannot be patented because they are considered an “abstract idea.”
However, you can patent the software process underlying your algorithm.

ALGORITHMS IN TODAY’S INFORMATION AGE
Artificial intelligence and machine learning developments have skyrocketed in recent years. As we continue
deeper into the information age, software developments have become increasingly important as our
culture becomes more and more dependent on computer devices and software.

Software developers are increasingly developing and relying on algorithms to make advances in this digital
age. As these software developers have sought to have their ideas patented to protect their intellectual
property rights, related patent case law has been changing in this area in recent years.

GENERAL PATENT REQUIREMENTS
Do you have software that can be patented? In general, for something to be patentable it must be useful.
To be considered useful, it must fall into one of four categories:

1. Machine;
2. Process;
3. Manufacture; and
4. Composition of matter.

Moreover, the invention you are looking to patent must also not be:

1. An abstract idea;
2. A natural phenomenon; or
3. A law of nature.

ALGORITHMS: ABSTRACT IDEAS VS. ABSTRACT IDEAS
So can you patent an algorithm based on these criteria? The problem algorithms run into in meeting these
patent criteria is that, on their own, algorithms are simply abstract ideas. So standing on their own, courts
consider algorithms foundational tools for scientific work rather than patentable ideas.

But if you can break down your software algorithm into a series of mathematical steps and procedures that
mechanize a process, then the algorithm would fall into the patentable “process” category, rather than the
“abstract idea” category.

So, while an algorithm cannot be patented, you can patent the series of steps that lead to your algorithm.

ELIGIBILITY CRITERIA FOR ALGORITHM PATENTS
An algorithm is not patentable if it falls into one of three categories:

Mathematical concepts;
Methods of organizing human activity; or
Mental processes.

So to have patentable software, if you can break down your algorithm into a series of steps and explain
how it solves a real-world problem, then it will probably meet the eligibility criteria.

THE ALICE / MAYO TEST
Whether you can patent software has been increasingly fought over in the courts. In Alice Corp. v. CLS Bank,
the Supreme Court ruled that because abstract ideas, natural phenomena, and laws of nature “are the basic
tools of scientific and technological work”, it was concerned that granting patent rights for these types of
tools might impede innovation rather than promote it. Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 573 U.S. 208,
216 (2014).

Alice, and another related legal opinion Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66, 71
(2012), established a test referred to as the Alice/Mayo test. This patent law test is as follows:

1. Is the claim at issue directed to a “judicial exception,” such as an abstract idea? If so then:
2. Do the claims contain an element or combination of elements to ensure that the patent in practice

amounts to significantly more than a patent upon the [ineligible concept] itself?

Alice and the lower court cases that followed it have established the standard for subject matter eligibility
in the U.S. Different countries will have different standards

The United States Patent Office has put out some useful guidance on patent subject matter eligibility which
explains this test in greater detail to help understand if you can patent an algorithm.

EXAMPLES OF ALGORITHM PATENTS

An example of a recent algorithm-related patent can help explain the type of software code that could be
eligible for a patent. For example, Amazon is seeking to patent an algorithm for :

“a system for capturing and processing portions of a spoken utterance command that may occur before a
wakeword.”

Essentially, Amazon is hoping to patent the algorithm underlying the software idea that Alexa, its ‘smart’
speaker, will be able to recognize specific spoken words such as “love” or “hate” during speech taking place
around it, even if the wakeword “hey Alexa” has not been used before making the statements.

WHO IS PATENTING ALGORITHMS?
Everyone from large tech giants like Google and Apple to small start-up companies are having algorithms
patented. Artificial intelligence is developed across different countries. A majority of algorithm patents are
being assigned to large tech companies located in the United States and Japan.

In terms of specific companies, IBM is the current leader of artificial intelligence patents. IBM currently has
over 8,000 patent applications, followed by Microsoft with over 5,000 patent applications. Toshiba and
Samsung are companies that are also high on the list of total artificial intelligence patents.

TYPES OF ARTIFICIAL INTELLIGENCE PATENTS
The WIPO recently released a report based on a detailed study of recent artificial intelligence patents. It
found that:

Machine learning is the dominant artificial intelligence technique disclosed in patents;
For artificial intelligence functional applications, computer vision (which includes image recognition) is
the most popular to be patented; and
Transportation and telecommunication are the top fields for artificial intelligence applications.

Looking To Protect Your Amazing Idea?

FREE Idea Protection Planning Session.

Join over 10,000 others who have asked for us advice and help.

Click here to get your FREE Idea Protection Planning Session now >>

PATENT RIGHTS VS. COPYRIGHT RIGHTS FOR
ALGORITHMS
Patent rights are not the only form of intellectual property rights. Even if you cannot patent your software
because you cannot distill it down to a series of steps, you may be able to copyright aspects of it, such as
the source code. Copyrights protect original works of authorship.

Computer programs are copyrightable. Keep in mind that copyright rights actually last longer than patent
rights, and so can preserve your control over portions of your software longer than a patent might be able
to. These rights are different from patent rights, however, so it’s important to get legal advice to
understand your various intellectual property rights.

3Love! Share! Tweet" Share# Pin$

Next Post

PROVISIONAL VS NON PROVISIONAL PATENT

Provisional vs Non Provisional Patent

SCHEDULE A FREE IDEA

PROTECTION PLANNING SESSION

First Name *

Last Name

Email *

Phone *

By c l ick ing Schedule Now, you agree to our Pr ivacy

Pol icy , inc luding our Cookie Use.

SCHEDULE NOW

R E C E N T P O S T S

Building and Managing Your Team
and Your Company’s Culture

What Makes Brands Succeed
Online?

Inventions, Product Design,
Product Development, and
Podcasting

Building Your Brand and Providing
Superior Customer Experience

From Engineering to
Entrepreneurship with Vanessa
Braxton of Black Momma Brands

Search... "

A B O U T U S

Attorneys

Rich Goldstein

Contact Us

Education Center

S E R V I C E S

Patents Article

Patent Evaluation

Agile Patenting

Design Patent

Provisional Patent Applications

Utility Patent

Software Patents

Trademarks

Product Launch Coaching

A B O U T T H E P A T E N T P R O C E S S

Before You Start A Patent Project

Two Criteria for Patentability

Is Your Idea Novel and Non-Obvious?

Finding the Best Prior Art

The Patent Application Process

Common Questions Prior to Working with Us

The Truth About The Patent Process

© 2021 Goldstein Patent Law | Patent Experts for Individuals, Start-ups and Entrepreneurs | Privacy Policy

Site by Ardent Creative

Articles and statements on this site are provided for general informational purposes only, and should not be substituted for legal advice.

Legal advice should only be provided through direct contact with an attorney who is fully apprised of all the facts and circumstances of any given case.

ATTORNEY ADVERTISING. Richard W. Goldstein, Goldstein Law Offices, P.C., 300 East 42nd Street · New York, NY 10017 · (212) 634-2830, 101 Tyrellan Avenue, Suite 320 · Staten Island, NY 10309 · (718) 701-0700, 320 Broad St · Red Bank, NJ 07701 ·

(908) 864-2600, U.S. Patent Office Registration No. 36527, is responsible for content of this page. Prior results do not guarantee a similar outcome.

A B O U T T H E PAT E N T P R O C E S S H O W T O G E T S TA R T E DC O N TA C T U S A B O U T U S % PAT E N T S % T R A D E M A R K S % P O D C A S T S

EDUCATION CENTER CALL US: (212) 634-2830 Search... "

13

Serve proprio decomprimere?

Compact Data Structures
A Practical Approach

Gonzalo Navarro
Department of Computer Science,

University of Chile

14

	Quali tecniche per comprimere un testo?
	Leggere, scrivere e comprimere: algoritmi e dizionari
	Cosa resta da fare?
	Serve proprio decomprimere?

