
An Exploratory Investigation on High-School
Students’ Understanding of Threads

— Survey Questions —

Emanuele Scapin1[0000−0001−8384−8231], Nicola Dalla
Pozza1[0000−0003−2764−9603], and Claudio Mirolo2[0000−0002−1462−8304]

1 ITT G.Chilesotti, 36016 Thiene, Italy
{escapin,ndallapozza}@chilesotti.it

2 University of Udine, 33100 Udine, Italy claudio.mirolo@uniud.it

Abstract. Students’ difficulties to learn concurrent programming are
well known amongst Computer Science instructors. While in the Inter-
national Computing Education community it is still up to debate the
extent to which such topic should be included in pre-university cur-
ricula, based on our country’s Ministerial guidelines for technical high
schools with a specialization in Computer Science, students are expected
to acquire key concurrent programming skills. With the aim of getting
insights about the nature of students’ difficulties, as well as to identify
possible pedagogical approaches to be adopted by teachers, we have un-
dertaken an investigation on students’ perception, proficiency and self-
confidence when dealing with concurrency and synchronization tasks.
We then present the results of a preliminary study carried out by sub-
mitting a survey in a couple of representative high schools of our area.
The survey includes subjective perception questions as well as small pro-
gram comprehension tasks addressing students’ understanding of thread
synchronization. Moreover, we also analyze students’ self-confidence in
connection with their actual performance in such tasks. A total of 68 high
school students were engaged in the survey. Our findings indicate that
students’ perception of self-confidence tends to weakly correlate to their
actual performance, although more in general they express a low self-
confidence level in relation to the topic. In particular, the results clearly
show that the concept of thread synchronization is especially difficult to
master for a large majority of them.

Keywords: Informatics education · Programming learning · High school ·
Threads · Concurrent programming

Survey Questions

Approach to threads

– In general, how would you rate the difficulty of the thread topic?
4–grade Likert scale (1=Not difficult – 4=Very difficult)

– How would you rate your performance when managing threaded applications?
4–grade Likert scale (1=Not satisfied – 4=Very satisfied)

– In your opinion, is it adequate the amount of time that the teacher spends to in-
troduce the thread topic?
4–grade Likert scale (1=Not adequate – 4=Definitely adequate)

– In your opinion, are the examples and exercises that the teacher proposes to intro-
duce the thread topic adequate?
4–grade Likert scale (1=Not adequate – 4=Definitely adequate)

– Rate the level of difficulty you typically encounter when dealing with the following
thread issues. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very difficult.
Topics: Class definition, Object shared between threads, Distinguishing shareable
vs. non–shareable data, Thread "Run" method definition, Starting a thread, Clos-
ing a thread, Choice of class methods, Identification of shared class methods, Un-
derstand thread life cycle, Dealing with thread state, Synchronization (in general).

– Rate the level of difficulty you encounter when using the following methods for
managing the state of a thread. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very difficult.
Methods: start, stop, sleep, suspend, wait, yield, join, resume, notify, notifyAll,
synchronized.

– Rate the level of difficulty you encounter when dealing with conditions between
threads. (Mark only one option per row)
Options: not known, usually simple, reasonably simple, difficult, very difficult.
Operations: Read a shared resource, Write or modify a shared resource, Accidental
resource sharing, Early release of a resource, Multiple Locks for the same resource,
Missed protection of a shared resource, Synchronization of shared resources, Syn-
chronization of methods that manage shared resources, Wait without wake–up
notification (Notify).

2

Tasks

The code fragments formalized in Java for Task 1.a–d refer to the Counter class defined
as follows:

public class Counter {

private int count = -1; // a negative value of count
// is interpreted as "undefined"

public synchronized int getCount() {
while (count < 0) {
try {
wait();

} catch (Exception e) {}
}
return count;

}

public synchronized void setCounter(int initValue) {
if (initValue >= 0) {
count = initValue;
notify();

}
}

public synchronized void increment() {
while (count < 0) {
try {
wait();

} catch (Exception e) {}
}
count = count + 1;

}

} // Counter

3

Task 1.a Analyze the execution of the following code snippets (Figure 1) for two sep-
arate threads, Thread-1 and Thread-2, operating on a shared instance x of the
Counter class introduced above. The operations of each of the two threads are
represented along opposite sides of the vertical axis, according to the time order
(from top to bottom) in which the methods invoked in the instructions are ex-
ecuted; furthermore, no operations on x or i have been omitted in the reported
flows. What are the output values printed during the execution of Thread-1? Mark
only one option.
Options: i = 1, count = 1; i = 1, count = 5; i = 5, count = 5; i = 6, count = 6;
The result cannot be predicted because there are several possibilities.

t1a

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1b

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1c

Counter x = new Counter();

Thread-1

x.increment();

int i = x.getCount();

x.setCounter(0);

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1d

Counter x = new Counter();

Thread-1

int i = x.getCount();

x.increment();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

x.setCounter(0);

Thread-2

x.setCounter(5);

Fig. 1: Task 1.a.

Task 1.b Analyze the execution of the following code snippets (Figure 2) for two sep-
arate threads, Thread-1 and Thread-2, operating on a shared instance x of the
Counter class introduced above. The operations of each of the two threads are
represented as described in question Task 1.a. What are the output values printed
during the execution of Thread-1? Mark only one option.
Options: i = 1, count = 1; i = 1, count = 5; i = 5, count = 5; i = 5, count = 6;
The result cannot be predicted because there are several possibilities.

t1a

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1b

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1c

Counter x = new Counter();

Thread-1

x.increment();

int i = x.getCount();

x.setCounter(0);

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1d

Counter x = new Counter();

Thread-1

int i = x.getCount();

x.increment();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

x.setCounter(0);

Thread-2

x.setCounter(5);

Fig. 2: Task 1.b

4

Task 1.c Analyze the execution of the following code snippets (Figure 3) for two sep-
arate threads, Thread-1 and Thread-2, operating on a shared instance x of the
Counter class introduced above. The operations of each of the two threads are
represented as described in question Task 1.a. What are the output values printed
during the execution of Thread-1? Mark only one option.
Options: i = 0, count = 0; i = 5, count = 0; i = 6, count = 0; i = 6, count = 6;
The result cannot be predicted because there are several possibilities.

t1a

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1b

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1c

Counter x = new Counter();

Thread-1

x.increment();

int i = x.getCount();

x.setCounter(0);

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1d

Counter x = new Counter();

Thread-1

int i = x.getCount();

x.increment();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

x.setCounter(0);

Thread-2

x.setCounter(5);

Fig. 3: Task 1.c

Task 1.d Analyze the execution of the following code snippets (Figure 4) for two sep-
arate threads, Thread-1 and Thread-2, operating on a shared instance x of the
Counter class introduced above. The operations of each of the two threads are
represented as described in question Task 1.a. What are the output values printed
during the execution of Thread-1? Mark only one option.
Options: i = 0, count = 0; i = 5, count = 6; i = 6, count = 6; i = -1, count = 6;
The result cannot be predicted because there are several possibilities.

t1a

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1b

Counter x = new Counter();

Thread-1

x.setCounter(0);

x.increment();

int i = x.getCount();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1c

Counter x = new Counter();

Thread-1

x.increment();

int i = x.getCount();

x.setCounter(0);

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

Thread-2

x.setCounter(5);

t1d

Counter x = new Counter();

Thread-1

int i = x.getCount();

x.increment();

System.out.println(

 "i=" + i + ", count="

 + x.getCount());

x.setCounter(0);

Thread-2

x.setCounter(5);

Fig. 4: Task 1.d

5

Task 1: self-confidence level With regard to the previous questions (Task 1.a–d),
rate your degree of confidence in the correctness of the solutions you have chosen
on a scale from 1 to 4.
4–grade Likert scale (1=Not confident at all – 4=Fully confident)

6

Task 2: Consider the classes defined below (Figure 5) and assume to start the program
through the main method of the Task2 class. Which of the proposed sequences will
be printed at the end of the execution? Mark only one option.
Options: P3P7P5; P3PP7PP5P; PP3P5P7; PP3PP7PP5; PPP375; PPPPPP375;
The program hangs in a deadlock; The result cannot be predicted because there
are several possibilities.

t2

class Adder extends Thread {

 private int loops;

 private Vector<Integer> buffer; // integer sequence

 public Adder(int loops, Vector<Integer> buffer) {

 this.loops = loops;
 this.buffer = buffer;
 }

 public void run() {

 for (int i=0; i<loops; i=i+1) {

 synchronized (buffer) {
 while (buffer.size() < 2) {
 try {
 buffer.wait();
 } catch (Exception e) {}
 }

 // n: adds the first two buffer elements
 int n = buffer.get(0) + buffer.get(1);

 buffer.clear(); // buffer is emptied
 System.out.print(""+n);
 buffer.notify();
 }}
 System.out.println();
 }

} // Adder

class Provider extends Thread {

 private int[] stream;
 private Vector<Integer> buffer;

 public Provider(int[] stream, Vector<Integer> buffer) {

 this.stream = stream;
 this.buffer = buffer;
 }

 public void run() {

 for (int i=0; i<stream.length; i=i+1) {

 int x = stream[i];
 synchronized (buffer) {
 while (buffer.size() == 2) {
 try {
 buffer.wait();
 } catch (Exception e) {}
 }
 System.out.print("P");

 buffer.add(x); // new element into buffer
 buffer.notify();
 }
 }
 }

} // Provider

public class Task2 {

 public static void main(String[] args) {

 int[] stream = new int[] { 1, 2, 3, 4, 3, 2 };

 // buffer initially empty
 Vector<Integer> buffer = new Vector<Integer>();
 Adder adder = new Adder(3, buffer);
 Provider provider = new Provider(stream, buffer);

 adder.start();
 provider.start();
 }

} // Task2

Fig. 5: Task 2

Task 2: self-confidence level With regard to the previous question (Task 2), rate
your degree of confidence in the correctness of the solution you have chosen on a
scale from 1 to 4.
4–grade Likert scale (1=Not confident at all – 4=Fully confident)

7

Task 3: Within a class describing the implementation of a shared resource, which of
the following methods’ definitions (Figure 6) can help to avoid conflicts in the
management of the resource itself?

t3

public synchronized int getValue() {
 return value;
}

public void setValue(int someValue) {
 value = someValue;
}

public void increment() {
 value++
}

Option 1

public synchronized int getValue() {
 return value;
}

public synchronized void
 setValue(int someValue) {
 value = someValue;
}

public synchronized void increment() {
 value++
}

Option 3

public int getValue() {
 synchronized (this) {
 return value;
 }
}

public void
 setValue(int someValue) {
 synchronized (this) {
 value = someValue;
 }
}

public void increment() {
 synchronized (this) {
 value++
 }
}

Option 5

public int getValue() {
 return value;
}

public synchronized void
 setValue(int someValue) {
 value = someValue;
}

public void increment() {
 value++
}

Option 2

public int getValue() {
 return value;
}

public void setValue(int someValue) {
 value = someValue;
}

public void increment() {
 value++
}

Option 4

Fig. 6: Task 3. Equivalence: Select all applicable items.

Task 3: self-confidence level With regard to the previous question (Task 3), rate
your degree of confidence in the correctness of the solution you have chosen on a
scale from 1 to 4.
4–grade Likert scale (1=Not confident at all – 4=Fully confident)

8

Task 4: Consider an instance of the Bouncer class defined below. The synchronization
modes of the from1to2 and from2to1 methods can lead to deadlock situations.

public class Bouncer {

private Vector<Integer> seq1;
private Vector<Integer> seq2;

public Bouncer(Vector<Integer> seq1, Vector<Integer> seq2) {

this.seq1 = seq1;
this.seq2 = seq2;

}

public void from1to2() {
synchronized (seq1) {
if (seq1.size() == 0) {
try {
seq1.wait();

} catch (Exception e) {}
}
int item = seq1.elementAt(0);
seq1.removeElementAt(0);
synchronized (seq2) {
seq2.add(item);
seq2.notify();

}
}

}

public void from2to1() {
synchronized (seq2) {
if (seq2.size() == 0) {
try {
seq2.wait();

} catch (Exception e) {}
}
int item = seq2.elementAt(0);
seq2.removeElementAt(0);
synchronized (seq1) {
seq1.add(item);
seq1.notify();

}
}

}

} // Bouncer

9

Which of the following workarounds will fix the code to prevent the occurrence of
a deadlock (while still ensuring proper synchronization)?
Mark only one option.
Options: delete all synchronized; eliminate nested synchronized; drop synchronized
by either method; drop the outer synchronized from one of the methods and the
nested one from the other; transform nested synchronized into sequenced synchro-
nized (one after the other rather than one within the other); reverse seq1 and seq2
in all synchronized constructs; none of the previous solutions.

Task 4: self-confidence level With regard to the previous question (Task 4), rate
your degree of confidence in the correctness of the solution you have chosen on a
scale from 1 to 4.
4–grade Likert scale (1=Not confident at all – 4=Fully confident)

10

Possible help tools

– Have you ever thought about a graphical representation of thread working princi-
ples, in order to ease its understanding?
4–grade Likert scale (1=Never – 4=Often)

– Do you think a graphical representation of how threads work could be effective in
improving your understanding?
4–grade Likert scale (1=Not effective – 4=Very effective)

– How would you rate the following graphing tools in the context of threads? (Mark
only one option per row)
Options: I don’t know this type of representation, not very useful, partially useful,
quite useful, very helpful.
Tools: flow–charts, Petri nets, finite state automata, Cartesian diagrams as a func-
tion of time, Unified Modeling Language (UML), Holt graphs, block diagrams.

Final open question

– What would you suggest to make the lessons on threads more interesting and
clearer? (Open answer)

11

	An Exploratory Investigation on High-School Students' Understanding of Threads — Survey Questions —

